Learn More
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells(More)
PURPOSE The mRNA levels of antioxidant enzymes, matrix metalloproteinases, cathepsin V/L2, and tissue inhibitor of matrix metalloproteinases (TIMPs) were determined in keratoconus and normal corneas. Protein levels or enzyme activities were analyzed when RNA levels were different. METHODS A total of 25 physiologic (normal) and 32 keratoconus corneas were(More)
PURPOSE To identify proteinases and growth factors abnormally expressed in human corneas of donors with diabetic retinopathy (DR), additional to previously described matrix metalloproteinase (MMP)-10 and -3 and insulin-like growth factor (IGF)-I. METHODS RNA was isolated from 35 normal, diabetic, and DR autopsy human corneas ex vivo or after organ(More)
PURPOSE To characterize the expression patterns of tenascin-C (TN-C) splice variants in normal corneas and in those affected by pseudophakic-aphakic bullous keratopathy (PBK-ABK). METHODS Alternatively spliced variants of TN-C mRNA from normal and age-matched human corneas with PBK-ABK were analyzed by semiquantitative reverse transcription-polymerase(More)
Purpose. Diabetic corneas display altered basement membrane and integrin markers, increased expression of proteinases, decreased hepatocyte growth factor (HGF) receptor, c-met proto-oncogene, and impaired wound healing. Recombinant adenovirus (rAV)-driven c-met overexpression in human organ-cultured corneas was tested for correction of diabetic(More)
PURPOSE Diseased corneas are potential targets for viral-based gene therapy to normalize (stimulate or inhibit) the expression of specific proteins. The choice of viral vectors is important to achieve optimal effect. The purpose of this study was to compare the tropism to different corneal cells of recombinant adenovirus (rAV) and recombinant(More)
MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC) in(More)
Human amniotic membrane is a standard substratum used to culture limbal epithelial stem cells for transplantation to patients with limbal stem cell deficiency. Various methods were developed to decellularize amniotic membrane, because denuded membrane is poorly immunogenic and better supports repopulation by dissociated limbal epithelial cells. Amniotic(More)
Our previous data suggested the involvement of matrix metalloproteinase-10 (MMP-10) and cathepsin F (CTSF) in the basement membrane and integrin changes occurring in diabetic corneas. These markers were now examined in normal human organ-cultured corneas upon recombinant adenovirus (rAV)-driven transduction of MMP-10 and CTSF genes. Fifteen pairs of normal(More)
PURPOSE We have previously identified specific epithelial proteins with altered expression in human diabetic central corneas. Decreased hepatocyte growth factor receptor (c-met) and increased proteinases were functionally implicated in the changes of these proteins in diabetes. The present study examined whether limbal stem cell marker patterns were altered(More)