Mehmet Umut Caglar

Learn More
Stochastic master equation (SME) models can provide detailed representation of genetic regulatory system but their use is restricted by the large data requirements for parameter inference and inherent computational complexity involved in its simulation. In this paper, we approximate the expected value of the output distribution of the SME by the output of a(More)
With the developments of Information High Technology, all applications of the instruction start to have tendency towards technology based instruction instead of directed, teacher-centered instruction. It is important to mention that computers are the main instructional support to the learning and teaching process. As a human being, there is an adaptation(More)
Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory(More)
Analyzing the behavior of epidemic spreading in a network is a good way of modeling several network phenomena. There are several studies analyzing the spreading of email viruses. Spreading of epidemics is also a good model for several types of information dissemination in distributed systems. In this study, we examine spreading of epidemics for anti-entropy(More)
BACKGROUND Design of drug combination cocktails to maximize sensitivity for individual patients presents a challenge in terms of minimizing the number of experiments to attain the desired objective. The enormous number of possible drug combinations constrains exhaustive experimentation approaches, and personal variations in genetic diseases restrict the use(More)
The fine-scale stochastic behavior of genetic regulatory networks is often modeled using stochastic master equations. The inherently high computational complexity of the stochastic master equation simulation presents a challenge in its application to biological system modeling even when the model parameters can be properly estimated. In this article, we(More)
  • 1