Mehmet T. Odman

Learn More
A direct sensitivity analysis technique is extended to calculate higher-order sensitivity coefficients in three-dimensional air quality models. The time evolution of sensitivity coefficients of different order is followed alongside that of the concentrations. Calculation of higher-order sensitivity coefficients requires few modifications to the original(More)
The decoupled direct method in three dimensions (DDM-3D) provides an efficient and accurate approach for probing the sensitivity of atmospheric pollutant concentrations to various changes in photochemical model inputs. The implementation of DDM-3D for the widely used Community Multiscale Air Quality (CMAQ) model was updated to account for recent changes in(More)
Isolating the effects of an individual emissions source on secondary air pollutants such as ozone and some components of particulate matter must incorporate complex nonlinear processes, be sensitive to small emissions perturbations, and account for impacts that may occur hundreds of kilometers away. The ability to evaluate these impacts is becoming(More)
[1] The performance of the Multiscale Air Quality Simulation Platform (MAQSIP) in simulating the regional distributions of tropospheric ozone and particulate matter (PM) is evaluated through comparisons of model results from three-dimensional simulations against available surface and aircraft measurements. These applications indicate that the model captures(More)
Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic(More)
We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering(More)
As part of the Southern Appalachian Mountains Initiative, a comprehensive air quality modeling system was developed to evaluate potential emission control strategies to reduce atmospheric pollutant levels at the Class I areas located in the Southern Appalachian Mountains. Six multiday episodes between 1991 and 1995 were simulated, and the skill of the(More)
On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences.(More)