Learn More
The accuracy of collaborative-filtering recommender systems largely depends on three factors: the quality of the rating prediction algorithm, and the quantity and quality of available ratings. While research in the field of recommender systems often concentrates on improving prediction algorithms, even the best algorithms will fail if they are fed(More)
Recommender systems (RSs) suffer from the cold-start or new user/item problem, i.e., the impossibility to provide a new user with accurate recommendations or to recommend new items. Active learning (AL) addresses this problem by actively selecting items to be presented to the user in order to acquire her ratings and hence improve the output of the RS. In(More)
The accuracy of collaborative filtering recommender systems largely depends on two factors: the quality of the recommendation algorithm and the nature of the available item ratings. In general, the more ratings are elicited from the users, the more effective the recommendations are. However, not all the ratings are equally useful and therefore, in order to(More)
Nowadays, Recommender Systems (RSs) play a key role in many businesses. They provide consumers with relevant recommendations , e.g., Places of Interest (POIs) to a tourist, based on user preference data, mainly in the form of ratings for items. The accuracy of recommendations largely depends on the quality and quantity of the ratings (preferences) provided(More)
In Collaborative Filtering Recommender Systems user's preferences are expressed in terms of rated items and each rating allows to improve system prediction accuracy. However, not all of the ratings bring the same amount of information about the user's tastes. Active Learning aims at identifying rating data that better reflects users' preferences. Active(More)
In this paper we present STS (South Tyrol Suggests), a context-aware mobile recommender system for places of interest (POIs) that integrates some innovative components, including: a personality questionnaire, i.e., a brief and entertaining questionnaire used by the system to learn users' personality; an active learning module that acquires(More)
The accuracy of collaborative-filtering recommender systems largely depends on the quantity and quality of the ratings added to the system over time. Active learning (AL) aims to improve the quality of ratings by selectively finding and soliciting the most informative ratings. However previous AL techniques have been evaluated assuming a rather artificial(More)
The new user problem in recommender systems is still challenging, and there is not yet a unique solution that can be applied in any domain or situation. In this paper we analyze viable solutions to the new user problem in collaborative filtering (CF) that are based on the exploitation of user personality information: (a) personality-based CF, which directly(More)
The accuracy of a collaborative-filtering system largely depends on two factors: the quality of the recommendation algorithm and the number and quality of the available product ratings. In general , the more ratings are elicited from the users, the more effective the recommendations are. However, not all the ratings are equally useful and specific(More)