Learn More
—The design of energy-efficient mechanisms is one of the key challenges in emerging wireless small cell networks. In this paper, a novel approach for opportunistically switching ON/OFF base stations to improve the energy efficiency in wireless small cell networks is proposed. The proposed approach enables the small cell base stations to optimize their(More)
This article explores one of the key enablers of beyond 4G wireless networks leveraging small cell network deployments, namely proactive caching. Endowed with predictive capabilities and harnessing recent developments in storage, context-awareness and social networks, peak traffic demands can be substantially reduced by proactively serving predictable user(More)
We analyze the physical layer (PHY) security of a communication scheme consisting of a multiple antenna transmitter with a single radio frequency (RF) chain using transmit antenna selection (TAS) and a single antenna receiver, in the presence of a sophisticated multiple antenna eavesdropper. We develop closed-form expressions for the analysis of the secrecy(More)
—The design of distributed mechanisms for interference management is one of the key challenges in emerging wireless small cell networks whose backhaul is capacity limited and heterogeneous (wired, wireless and a mix thereof). In this paper, a novel, backhaul-aware approach to interference management in wireless small cell networks is proposed. The proposed(More)
—The deployment of small cell base stations (SCBSs) overlaid on existing macro-cellular systems is seen as a key solution for offloading traffic, optimizing coverage, and boosting the capacity of future cellular wireless systems. The next-generation of SCBSs is envisioned to be multi-mode, i.e., capable of transmitting simultaneously on both licensed and(More)
The use of small cells serviced by low-power base stations such as femtocells is envisioned to improve the spectrum efficiency and the coverage of next-generation mobile wireless networks. However, one of the major challenges in femtocell deployments is managing interference. In this paper, we propose a novel cooperative solution that enables femtocells to(More)
—In this paper, a decentralized and self-organizing mechanism for small cell networks (such as micro-, femto-and picocells) is proposed. In particular, an application to the case in which small cell networks aim to mitigate the interference caused to the macrocell network, while maximizing their own spectral efficiencies, is presented. The proposed(More)
Overlaying low-power, low-cost, femtocells, over existing wireless networks has recently emerged as a means to significantly improve the coverage and performance of next-generation wireless networks. While most existing literature focuses on spectrum sharing and interference management among non-cooperative femtocells, in this paper, we propose a novel(More)
The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user(More)