Mehdi Asghari

Learn More
We present a high-speed silicon optical modulator with a low V(pp) (peak-to-peak driving voltage) and ultralow energy consumption based on a microring resonator, with the refractive index modulation achieved by electric-field-induced carrier depletion in a reverse-biased lateral pn diode embedded in the ring structure. With a V(pp) of 2 V, we demonstrate a(More)
We present thermally tunable silicon racetrack resonators with an ultralow tuning power of 2.4 mW per free spectral range. The use of free-standing silicon racetrack resonators with undercut structures significantly enhances the tuning efficiency, with one order of magnitude improvement of that for previously demonstrated thermo-optic devices without(More)
We present a wavelength-tunable, compact, high speed and low power silicon microring modulator. With a ring radius of 5 microm, we demonstrate a modulator with a high speed of 12.5 Gbps and a driving voltage of 3 V to achieve approximately 6 dB extinction ratio in high speed measurement. More importantly, tunability of the resonant wavelength is(More)
Using low parasitic microsolder bumping, we hybrid integrated efficient photonic devices from different platforms with advanced 40 nm CMOS VLSI circuits to build ultra-low power silicon photonic transmitters and receivers for potential applications in high performance inter/intra-chip interconnects. We used a depletion racetrack ring modulator with improved(More)
We present two effective approaches to improve the responsivity of high speed waveguide-based Ge photodetectors integrated on a 0.25 μm silicon-on-insulator (SOI) platform. The main cause of poor responsivity is identified as metal absorption from the top contact to Ge. By optimizing Ge thickness and offsetting the contact window, we have demonstrated that(More)
We report a vertical p-i-n thin-film germanium photodetector integrated on 3microm thick large core silicon-on-insulator (SOI) waveguides. The device demonstrates very high external responsivity due to the low fiber coupling loss to the large core waveguides. The germanium width and thickness are carefully designed to achieve high responsivity yet retain(More)
We present thermally reconfigurable multiplexing devices based on silicon microring resonators with low tuning power and low thermal crosstalk. Micro-heaters on top of the rings are employed to tune the resonant wavelengths through the thermo-optic effect of silicon. We achieve a low tuning power of 21 mW per free spectral range for a single ring by(More)
We demonstrate low loss shallow-ridge silicon waveguides with an average propagation loss of 0.274 + or - 0.008 dB/cm in the C-band (1530 nm - 1565 nm). These waveguides have a cross section of 0.25 microm by 2 microm and are fabricated by standard photolithography and dry etching. We also investigate a compact double-level taper which adiabatically couples(More)
Fast, compact, and power-efficient silicon microcavity electro-optic modulators are expected to be critical components for chip-level optical interconnects. It is highly desirable that these modulators can be driven by voltage swings of 1 V or less to reduce power dissipation and make them compatible with voltage supply levels associated with current and(More)
We demonstrate a very efficient high speed silicon modulator with an ultralow pi-phase-shift voltage-length product V(pi)L = 1.4V-cm. The device is based on a Mach-Zehnder interferometer (MZI) fabricated using 0.25microm thick silicon-on-insulator (SOI) waveguide with offset lateral PN junctions. Optimal carrier-depletion induced index change has been(More)