Megumi Maeda

Learn More
Silicosis patients (SILs) and patients who have been exposed to asbestos develop not only respiratory diseases but also certain immunological disorders. In particular, SIL sometimes complicates autoimmune diseases such as systemic scleroderma, rheumatoid arthritis (known as Caplan syndrome), and systemic lupus erythematoses. In addition, malignant(More)
In this study, we identified a gene encoding tomato ENGase (Endo-LE) using the gene information of rice ENGase, and expressed the Endo-LE protein in Escherichia coli. The substrate specificity of the recombinant Endo-LE was the same as that of the native enzyme, showing strong activity towards the high-mannose type N-glycans with the(More)
Free oligosaccharides (FOSs) in the cytosol of eukaryotic cells are mainly generated during endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded glycoproteins. We analyzed FOS of the nematode Caenorhabditis elegans to elucidate its detailed degradation pathway. The major FOSs were high mannose-type ones bearing 3-9 Man residues. About 94%(More)
Prostaglandin E2 (PGE2) is a lipid mediator that displays important immunomodulatory properties, such as polarization of cytokine production by T cells. Recent investigations have revealed that the effect of PGE2 on cytokine production is greatly influenced by external stimuli; however, it is unclear whether PGE2 plays a significant role in major(More)
Endo-β-N-acetylglucosaminidase (ENGase) is involved in the production of high-mannose type free N-glycans during plant development and fruit maturation. In a previous study (K. Nakamura et al. Biosci. Biotechnol. Biochem., 73, 461-464 (2009)), we identified the tomato ENGase gene and found that gene expression remained relatively constant. In the present(More)
As a part of the study to reveal the biological significance of de-N-glycosylation in plants, we analysed the structural features of free N-glycans (FNGs) accumulated inside cells and secreted to the extracellular space using a rice cell culture system. The structural analysis of FNGs obtained from the intracellular fraction revealed that the high-mannose(More)
Asbestos exposure causes various tumors such as lung cancer and malignant mesothelioma. To elucidate the immunological alteration in asbestos-related tumors, an asbestos-induced apoptosis-resistant subline (MT-2Rst) was established from a human adult T cell leukemia virus-immortalized T cell line (MT-2Org) by long-term exposure to asbestos chrysotile-B(More)
To analyze the possibility that immunological alteration in asbestos-related diseases (ARDs) such as asbestosis (ASB) and malignant mesothelioma (MM) may affect the progression of cancers, a human adult T cell leukemia virus-immortalized T cell line (MT-2Org) was continuously exposed to 10 μg/ml of chrysotile-B (CB), an asbestos. After at least 8 months of(More)
Silica and asbestos cause pneumoconioses known as silicosis and asbestosis, respectively, that are each characterized by progressive pulmonary fibrosis. While local effects of inhaled silica particles alter the function of alveolar macrophages and sequential cellular and molecular biological events, general systemic immunological effects may also evolve.(More)
PGD(2) is the major prostanoid produced during the acute phase of allergic reactions. Two PGD(2) receptors have been isolated, DP and CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells), but whether they participate in the pathophysiology of allergic diseases remains unclear. We investigated the role of CRTH2 in the initiation of(More)