Meghan S. Soustek

Learn More
Barth's syndrome (BTHS) is an X-linked mitochondrial disease that is due to a mutation in the Tafazzin (TAZ) gene. Based on sequence homology, TAZ has been characterized as an acyltransferase involved in the metabolism of cardiolipin (CL), a unique phospholipid almost exclusively located in the mitochondrial inner membrane. Yeast, Drosophila, and zebrafish(More)
Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA)). Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in(More)
Metabolic myopathies are a diverse group of rare diseases in which impaired breakdown of stored energy leads to profound muscle dysfunction ranging from exercise intolerance to severe muscle wasting. Metabolic myopathies are largely caused by functional deficiency of a single gene and are generally subcategorized into three major types of metabolic disease:(More)
Barth syndrome (BTHS) is an X-linked metabolic disorder that causes cardiomyopathy in infancy and is linked to mutations within the Tafazzin (TAZ) gene. The first mouse model, a TAZ knockdown model (TAZKD), has been generated to further understand the bioenergetics leading to cardiomyopathy. However, the TAZKD model does not show early signs of(More)
Pompe disease is a systemic metabolic disorder characterized by lack of acid-alpha glucosidase (GAA) resulting in ubiquitous lysosomal glycogen accumulation. Respiratory and ambulatory dysfunction are prominent features in patients with Pompe yet the mechanism defining the development of muscle weakness is currently unclear. Transgenic animal models of(More)
Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood-brain barrier and progressive CNS(More)
  • 1