Learn More
Relative quiescence is a defining characteristic of hematopoietic stem cells, while their progeny have dramatic proliferative ability and inexorably move toward terminal differentiation. The quiescence of stem cells has been conjectured to be of critical biologic importance in protecting the stem cell compartment, which we directly assessed using mice(More)
The generation of humanized BLT mice by the cotransplantation of human fetal thymus and liver tissues and CD34(+) fetal liver cells into nonobese diabetic/severe combined immunodeficiency mice allows for the long-term reconstitution of a functional human immune system, with human T cells, B cells, dendritic cells, and monocytes/macrophages repopulating(More)
Knowledge of human T cells derives chiefly from studies of peripheral blood, whereas their distribution and function in tissues remains largely unknown. Here, we present a unique analysis of human T cells in lymphoid and mucosal tissues obtained from individual organ donors, revealing tissue-intrinsic compartmentalization of naive, effector, and memory(More)
Five patients with end-stage renal disease received combined bone marrow and kidney transplants from HLA single-haplotype mismatched living related donors, with the use of a nonmyeloablative preparative regimen. Transient chimerism and reversible capillary leak syndrome developed in all recipients. Irreversible humoral rejection occurred in one patient. In(More)
The use of animal organs could potentially alleviate the critical worldwide shortage of donor organs for clinical transplantation. Because of the strong immune response to xenografts, success will probably depend upon new strategies of immune suppression and induction of tolerance. Here we report our initial results using alpha-1,3-galactosyltransferase(More)
Allogeneic bone marrow transplantation (in immunocompetent adults) has always required cytoreductive treatment of recipients with irradiation or cytotoxic drugs to achieve lasting engraftment at levels detectable by non-PCR-based techniques ('macrochimerism' or 'mixed chimerism'). Only syngeneic marrow engraftment at such levels has been achieved in(More)
Transplantation of haematopoietic stem cells--cells capable of self renewing and reconstituting all types of blood cell--can treat numerous lethal diseases, including leukaemias and lymphomas. It may now be applicable for the treatment of severe autoimmune diseases, such as therapy-resistant rheumatoid arthritis and multiple sclerosis. Studies in animal(More)
Xenotransplantation using pigs as the transplant source has the potential to resolve the severe shortage of human organ donors. Although the development of relatively non-toxic immunosuppressive or tolerance-inducing regimens will be required to justify clinical trials using pig organs, recent advances in our understanding of the biology of xenograft(More)
Mixed lymphohematopoietic chimerism can be induced in mice with bone marrow transplantation (BMT) after a nonmyeloablative preparative regimen that includes cyclophosphamide, anti-T-cell antibody therapy, and thymic irradiation. These mixed chimeras are resistant to the induction of graft-versus-host disease (GVHD) after delayed donor leukocyte infusions(More)
In an attempt to capture graft-versus-tumor effects without graft-versus-host disease (GVHD), the authors initiated a trial of nonmyeloablative allogeneic bone marrow transplantation (BMT) in patients with advanced hematologic malignancies, with the majority of patients having chemotherapy-refractory disease. Forty-two patients received an HLA-matched(More)