Learn More
Thioredoxin functions in nearly all organisms as the major thiol-disulfide oxidoreductase within the cytosol. Its prime purpose is to maintain cysteine-containing proteins in the reduced state by converting intramolecular disulfide bonds into dithiols in a disulfide exchange reaction. Thioredoxin has been reported to contribute to a wide variety of(More)
The polytopic membrane protein FeoB is a ferrous iron transporter in prokaryotes. The protein contains a potassium-activated GTPase domain that is essential in regulating the import of iron and conferring virulence to many disease-causing bacteria. However, the mechanism by which the G-domain of FeoB hydrolyzes GTP is not well understood. In particular, it(More)
SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a(More)
Cadmium is a transition metal ion that is highly toxic in biological systems. Although relatively rare in the Earth's crust, anthropogenic release of cadmium since industrialization has increased biogeochemical cycling and the abundance of the ion in the biosphere. Despite this, the molecular basis of its toxicity remains unclear. Here we combine(More)
Vacuolar-type ATPases (V-ATPases) exist in various cellular membranes of many organisms to regulate physiological processes by controlling the acidic environment. Here, we have determined the crystal structure of the A(3)B(3) subcomplex of V-ATPase at 2.8 A resolution. The overall construction of the A(3)B(3) subcomplex is significantly different from that(More)
Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the(More)
Crystals of a single-point mutant (T109S) of Escherichia coli dihydroorotase (DHOase) with diminished activity grown in the presence of L-dihydroorotate (L-DHO) are tetragonal, with a monomer in the asymmetric unit. These crystals are extremely unstable and disintegrate shortly after formation, which is followed by the growth of orthorhombic crystals from(More)
  • 1