Megan L Kerr

Learn More
Neuritic abnormalities are a major hallmark of Alzheimer's disease (AD) pathology. Accumulation of b-amyloid protein (Ab) in the brain causes changes in neuritic processes in individuals with this disease. In this study, we show that Ab decreases neurite outgrowth from SH-SY5Y human neuroblastoma cells. To explore molecular pathways by which Ab alters(More)
Neuritic abnormalities are a major hallmark of Alzheimer's disease (AD) pathology. Accumulation of beta-amyloid protein (Abeta) in the brain causes changes in neuritic processes in individuals with this disease. In this study, we show that Abeta decreases neurite outgrowth from SH-SY5Y human neuroblastoma cells. To explore molecular pathways by which Abeta(More)
The beta-amyloid protein precursor (APP) has been extensively studied for its role in amyloid production and the pathogenesis of Alzheimer's disease (AD). However, little is known about the normal function of APP and its biological interactions. In this Mini-Review, the role of the cytoplasmic domain of APP in APP trafficking and proteolysis is described.(More)
Accumulation of the amyloid protein (Abeta) in the brain is an important step in the pathogenesis of Alzheimer's disease. However, the mechanism by which Abeta exerts its neurotoxic effect is largely unknown. It has been suggested that the peptide can bind to the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). In this study, we examined the binding(More)
Aggregation of beta-amyloid protein (Abeta) to form oligomers is considered to be a key step in generating neurotoxicity in the Alzheimer's disease brain. Agents that bind to Abeta and inhibit oligomerization have been proposed as Alzheimer's disease therapeutics. In this study, we investigated the binding of fluorescein-labeled Abeta(1-42)(More)
  • 1