Learn More
Successful recovery and sustainability of threatened and exploited species depends in part on retention and maintenance of genetic diversity. Theory indicates that genetic diversity is lost at a rate inversely proportional to the genetically effective population size (N(e)), which is roughly equal to one-half the adult census size (N) in many organisms.(More)
Mitochondrial ND2 sequences were used to investigate the phylogenetic relationships amongst 31 diprotodontid marsupials (kangaroos, wombats, koala, possums, and allies). ND2 sequences were analyzed separately and in conjunction with available 12S rDNA sequences for 22 diprotodontid taxa. Phylogenetic analyses consistently identified monophyly for the(More)
The endangered Rio Grande silvery minnow persists as a remnant population in a highly fragmented and regulated arid-land river system. The species is subject to dramatic annual fluctuations in density. Since 2003, the wild population has been supplemented by hatchery-reared fish. We report on a 12-year (1999-2010) monitoring study of genetic diversity and(More)
Phylogenetic relationships within the possums of the family Petauridae, including their affinities with the family Pseudocheiridae, were inferred from DNA sequences obtained for the mitochondrial ND2 gene (1040 bp) combined with previously published partial 12S rDNA sequences. Short, deep internodes characterize some of the divergences obtained. The(More)
Genetic monitoring tracks changes in measures of diversity including allelic richness, heterozygosity and genetic effective size over time, and has emerged as an important tool for understanding evolutionary consequences of population management. One proposed application of genetic monitoring has been to estimate abundance and its trajectory through time.(More)
The mountain pygmy-possum, Burramys parvus, exists in isolated and fragmented populations in the Australian alps. To examine the degree of interpopulation divergence, mitochondrial cytochrome b and NADH dehydrogenase subunit 2 (NADH2) sequences were obtained from samples representing all populations of B. parvus. Three divergent mitochondrial DNA (mtDNA)(More)
Genetic drift is expected to be the predominant evolutionary force in small, fragmented peripheral populations, which can lead to divergent allele frequencies and lowered diversity compared to the core population. Peripheral populations are not considered a high priority for conservation for this reason. However, peripheral populations may possess unique(More)
In desert streams, fishes and other organisms that depend on surface water are predicted to inhabit smaller and more isolated wetted reaches, while the frequency and severity of disturbance is expected to increase under most climate change models. Together, these factors should reduce population genetic diversity and persistence probabilities. In this(More)
The Arkansas River Shiner is a threatened species that has been extirpated throughout much of its native range (Arkansas River drainage) and remaining populations are imperiled. Prior to 1978, this species was accidently introduced to the Pecos River (Rio Grande drainage) via bait bucket, and has since persisted for over 30 years. Genetic data show that the(More)
The major histocompatibility complex (MHC) is a critical component of the adaptive immune response in vertebrates. Due to the role that MHC plays in immunity, absence of variation within these genes may cause species to be vulnerable to emerging diseases. The freshwater fish family Cyprinidae comprises the most diverse and species-rich group of freshwater(More)