Learn More
Components of the prokaryotic clustered, regularly interspaced, short palindromic repeats (CRISPR) loci have recently been repurposed for use in mammalian cells. The CRISPR-associated (Cas)9 can be programmed with a single guide RNA (sgRNA) to generate site-specific DNA breaks, but there are few known rules governing on-target efficacy of this system. We(More)
CRISPR-Cas9-based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), one can reprogram Cas9 to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently devised sgRNA design rules to(More)
Directed cell migration and process outgrowth are vital to proper development of many metazoan tissues. These processes are dependent on reorganization of the actin cytoskeleton in response to external guidance cues. During development of the nervous system, the MIG-10/RIAM/Lamellipodin (MRL) signaling proteins are thought to transmit positional information(More)
CRISPR/Cas9 screening has proven to be a versatile tool for genomics research. Based on unexpected results from a genome-wide screen, we developed a CRISPR/Cas9-mediated approach to mutagenesis, exploiting the allelic diversity generated by error-prone non-homologous end-joining (NHEJ) to identify novel gain-of-function and drug resistant alleles of the(More)
CRISPR/Cas9 screening has proven to be a versatile tool for genomics research. We describe a CRISPR/Cas9-mediated approach to mutagenesis, exploiting the allelic diversity generated by error-prone non-homologous end-joining (NHEJ) to identify gain-of-function alleles of the MAPK signaling pathway genes MEK1 and BRAF. These results illustrate a scalable(More)
  • 1