Meagan Sullender

Learn More
CRISPR-Cas9-based genetic screens are a powerful new tool in biology. By simply altering the sequence of the single-guide RNA (sgRNA), one can reprogram Cas9 to target different sites in the genome with relative ease, but the on-target activity and off-target effects of individual sgRNAs can vary widely. Here, we use recently devised sgRNA design rules to(More)
CRISPR/Cas9 screening has proven to be a versatile tool for genomics research. Based on unexpected results from a genome-wide screen, we developed a CRISPR/Cas9-mediated approach to mutagenesis, exploiting the allelic diversity generated by error-prone non-homologous end-joining (NHEJ) to identify novel gain-of-function and drug resistant alleles of the(More)
CRISPR/Cas9 screening has proven to be a versatile tool for genomics research. We describe a CRISPR/Cas9-mediated approach to mutagenesis, exploiting the allelic diversity generated by error-prone non-homologous end-joining (NHEJ) to identify gain-of-function alleles of the MAPK signaling pathway genes MEK1 and BRAF. These results illustrate a scalable(More)
  • 1