Md Tamjidul Hoque

Learn More
Protein structure prediction is an important but unsolved problem in biological science. Predicted structures vary much with energy functions and structure-mapping spaces. In our simplified ab initio protein structure prediction methods, we use hydrophobic-polar (HP) energy model for structure evaluation, and 3-dimensional face-centred-cubic lattice for(More)
Protein Folding Prediction (PFP) is essentially an energy minimization problem formalised by the definition of a fitness function. Several PFP models have been proposed including the Hydrophobic-Hydrophilic (HP) model, which is widely used as a test-bed for evaluating new algorithms. The calculation of the fitness is the major computational task in(More)
Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery(More)
A set of features computed from the primary amino acid sequence of proteins, is crucial in the process of inducing a machine learning model that is capable of accurately predicting three-dimensional protein structures. Solutions for existing protein structure prediction problems are in need of features that can capture the complexity of molecular level(More)
For guidance on citations see FAQs. c [not recorded] Version: [not recorded] Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online's data policy on reuse of materials please consult the policies page. Abstract: Protein Folding Prediction(More)
Secondary structure (SS) refers to the local spatial organization of a polypeptide backbone atoms of a protein. Accurate prediction of SS can provide crucial features to form the next higher level of 3D structure of a protein accurately. SS has three different major components, helix (H), beta (E) and coil (C). Most of the SS predictors express imbalanced(More)
Intrinsically disordered proteins or, regions perform important biological functions through their dynamic conformations during binding. Thus accurate identification of these disordered regions have significant implications in proper annotation of function, induced fold prediction and drug design to combat critical diseases. We introduce DisPredict, a(More)
Protein structure prediction is computationally a very challenging problem. A large number of existing search algorithms attempt to solve the problem by exploring possible structures and finding the one with the minimum free energy. However, these algorithms perform poorly on large sized proteins due to an astronomically wide search space. In this paper, we(More)
  • 1