Md. Jahangir Alam

Learn More
In this paper, we describe recent progress in i-vector based speaker verification. The use of universal background models (UBM) with full-covariance matrices is suggested and thoroughly experimentally tested. The i-vectors are scored using a simple cosine distance and advanced techniques such as Probabilistic Linear Discriminant Analysis (PLDA) and(More)
The duration of speech segments has traditionally been controlled in the NIST speaker recognition evaluations so that researchers working in this framework have been relieved of the responsibility of dealing with the duration variability that arises in practical applications. The fixed dimensional i-vector representation of speech utterances is ideal for(More)
In this paper we study the performance of the low-variance multi-taper Mel-frequency cepstral coefficient (MFCC) and perceptual linear prediction (PLP) features in a state-ofthe-art i-vector speaker verification system. The MFCC and PLP features are usually computed from a Hamming-windowed periodogram spectrum estimate. Such a singletapered spectrum(More)
This paper describes data collection efforts conducted as part of the RedDots project which is dedicated to the study of speaker recognition under conditions where test utterances are of short duration and of variable phonetic content. At the current stage, we focus on English speakers, both native and non-native, recruited worldwide. This is made possible(More)
The automatic speaker verification spoofing and countermeasures challenge 2015 provides a common framework for the evaluation of spoofing countermeasures or anti-spoofing techniques in the presence of various seen and unseen spoofing attacks. This contribution proposes a system consisting of amplitude, phase, linear prediction residual, and combined(More)
We discuss the limitations of the i-vector representation of speech segments in speaker recognition and explain how Joint Factor Analysis (JFA) can serve as an alternative feature extractor in a variety of ways. Building on the work of Zhao and Dong, we implemented a variational Bayes treatment of JFA which accommodates adaptation of universal background(More)
The health risks of As exposure due to the installation of millions of shallow tubewells in the Bengal Basin are known, but fecal contamination of shallow aquifers has not systematically been examined. This could be a source of concern in densely populated areas with poor sanitation because the hydraulic travel time from surface water bodies to shallow(More)
We reformulate joint factor analysis so that it can serve as a feature extractor for text-dependent speaker recognition. The new formulation is based on left-to-right modeling with tied mixture HMMs and it is designed to deal with problems such as the inadequacy of subspace methods in modeling speaker-phrase variability, UBM mismatches that arise as a(More)
In this paper we introduce a robust feature extractor, dubbed as robust compressive gammachirp filterbank cepstral coefficients (RCGCC), based on an asymmetric and level-dependent compressive gammachirp filterbank and a sigmoid shape weighting rule for the enhancement of speech spectra in the auditory domain. The goal of this work is to improve the(More)
This paper studies the low-variance multi-taper mel-frequency cepstral coefficient (MFCC) features in the stateof-the-art speaker verification. The MFCC features are usually computed using a Hamming-windowed DFT spectrum. Windowing reduces the bias of the spectrum but variance remains high. Recently, low-variance multi-taper MFCC features were studied in(More)