Learn More
Cadmium (Cd) is a toxic heavy metal that enters the environment through various anthropogenic sources, and inhibits plant growth and development. Cadmium toxicity may result from disturbance in plant metabolism as a consequence of disturbance in the uptake and translocation of mineral nutrients. Plant nutrients and Cd compete for the same transporters and,(More)
A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth(More)
The influence of salicylic acid (SA) in alleviation of salt stress in mungbean (Vigna radiata L.) through modulation of glycinebetaine (GB) and ethylene was studied. SA application at 0.5 mM increased methionine (Met) and GB accumulation in plants concomitant with the suppression of ethylene formation by inhibiting 1-aminocyclopropane carboxylic acid(More)
We have studied the influence of selenium (Se) and sulfur (S) in the protection of photosynthetic capacity of wheat (Triticum aestivum) against cadmium (Cd) stress. The involvement of ethylene and its interaction with proline and antioxidant metabolism in the tolerance of plants to Cd stress was evaluated. Application of Se or S alleviated Cd-induced(More)
Sulfur (S) deficiency is prevailing all over the world and becoming an important issue for crop improvement through maximising its utilization efficiency by plants for sustainable agriculture. Its interaction with other regulatory molecules in plants is necessary to improve our understanding on its role under changing environment. Our knowledge on the(More)
We investigated the influence of exogenously sourced ethylene (200 μL L−1 ethephon) in the protection of photosynthesis against 200 mg kg−1 soil each of nickel (Ni)- and zinc (Zn)-accrued stress in mustard (Brassica juncea L.). Plants grown with Ni or Zn but without ethephon exhibited increased activity of 1-aminocyclopropane carboxylic acid synthase, and(More)
We studied the response of ethylene-sensitive (Pusa Jai Kisan) and ethylene-insensitive (SS2) mustard (Brassica juncea) cultivars to 0, 0.5, 1.0 and 2.0 mM SO₄(2-), and the effect of 1.0 mM SO₄(2-) was studied in the amelioration of 50 µM cadmium (Cd). The Cd-induced oxidative stress and Cd accumulation were greater in SS2 than Pusa Jai Kisan, but sulfur(More)
Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene(More)
Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under(More)
The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard(More)