Learn More
In this study, we investigated the role of orexinergic systems in dopamine-related behaviors induced by the mu-opioid receptor agonist morphine in rodents. Extensive coexpression of tyrosine hydroxylase with orexin receptors was observed in the mouse ventral tegmental area (VTA). The levels of dopamine and its major metabolites in the nucleus accumbens were(More)
Ligand-directed signaling has been suggested as a basis for the differences in responses evoked by otherwise receptor-selective agonists. The underlying mechanisms are not understood, yet clearer definition of this concept may be helpful in the development of novel, pathway-selective therapeutic agents. We previously showed that kappa-opioid receptor(More)
It is well known that long-term exposure to psychostimulants induces neuronal plasticity. Recently, accumulating evidence suggests that astrocytes may actively participate in synaptic plasticity. In this study, we found that in vitro treatment of cortical neuron/glia co-cultures with either methamphetamine (METH) or morphine (MRP) caused the activation of(More)
Astrocytes are a subpopulation of glial cells that directly affect neuronal function. This review focuses on the potential functional roles of astrocytes in the development of behavioral sensitization and rewarding effects induced by chronic treatment with drugs of abuse. In vitro treatment of cortical neuron/glia cocultures with either methamphetamine or(More)
SUMMARY Maladaptive responses to stress adversely affect human behavior, yet the signaling mechanisms underlying stress-responsive behaviors remain poorly understood. Using a conditional gene knockout approach, the a isoform of p38 mitogen-activated protein kinase (MAPK) was selectively inactivated by AAV1-Cre-recombinase infection in specific brain regions(More)
The present study was undertaken to evaluate the implication of delta-opioid receptor function in neurogenesis and neuroprotection. We found that the stimulation of delta-opioid receptors by the selective delta-opioid receptor agonist SNC80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] (10 nm)(More)
Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were completely suppressed by repeated intrathecal (i.t.) injection of a TrkB/Fc chimera protein, which sequesters endogenous brain-derived neurotrophic factor (BDNF). In addition, BDNF heterozygous (+/-) knockout mice exhibited a significant suppression of nerve ligation-induced(More)
In the present study, we investigated the role of orexinergic systems in the activation of midbrain dopamine neurons. In an in vitro study, exposure to either orexin A or orexin B under superfusion conditions produced a transient increase in the intracellular Ca(2+) concentration through the phospholipase C (PLC)/protein kinase C (PKC) pathway via(More)
GTP binding regulatory protein (G protein)-coupled receptors can activate MAPK pathways via G protein-dependent and -independent mechanisms. However, the physiological outcomes correlated with the cellular signaling events are not as well characterized. In this study, we examine the involvement of G protein and beta-arrestin 2 pathways in kappa opioid(More)
The κ-opioid receptor is a widely expressed G-protein-coupled receptor that has been implicated in biological responses to pain, stress, anxiety, and depression, and its potential as a therapeutic target in these syndromes is becoming increasingly apparent. However, the prototypical selective κ-opioid antagonists have very long durations of action that have(More)