Maysam Ghovanloo

Learn More
The next generation of implantable high-power neuroprosthetic devices such as visual prostheses and brain computer interfaces are going to be powered by transcutaneous inductive power links formed between a pair of printed spiral coils (PSC) that are batch-fabricated using micromachining technology. Optimizing the power efficiency of the wireless link is(More)
Printed spiral coils (PSCs) are viable candidates for near-field wireless power transmission to the next generation of high-performance neuroprosthetic devices with extreme size constraints, which will target intraocular and intracranial spaces. Optimizing the PSC geometries to maximize the power transfer efficiency of the wireless link is imperative to(More)
A high data-rate frequency-shift keying (FSK) modulation protocol, a wideband inductive link, and three demodulator circuits have been developed with a data-rate-to-carrier-frequency ratio of up to 67%. The primary application of this novel FSK modulation/demodulation technique is to send data to inductively powered wireless biomedical implants at data(More)
We present an inductively powered 32-channel wireless integrated neural recording (WINeR) system-on-a-chip (SoC) to be ultimately used for one or more small freely behaving animals. The inductive powering is intended to relieve the animals from carrying bulky batteries used in other wireless systems, and enables long recording sessions. The WINeR system(More)
A new CMOS current source is described for biomedical implantable microstimulator applications, which utilizes MOS transistors in deep triode region as linearized voltage controlled resistors (VCR). The VCR current source achieves large voltage compliance, up to 97% of the supply voltage, while maintaining high output impedance in the 100 MOmega range to(More)
Inductive power transmission is widely used to energize implantable microelectronic devices (IMDs), recharge batteries, and energy harvesters. Power transfer efficiency (PTE) and power delivered to the load (PDL) are two key parameters in wireless links, which affect the energy source specifications, heat dissipation, power transmission range, and(More)
We present an active full-wave rectifier with offset-controlled high speed comparators in standard CMOS that provides high power conversion efficiency (PCE) in high frequency (HF) range for inductively powered devices. This rectifier provides much lower dropout voltage and far better PCE compared to the passive on-chip or off-chip rectifiers. The built-in(More)
This paper describes the design and implementation of fully integrated rectifiers in BiCMOS and standard CMOS technologies for rectifying an externally generated RF carrier signal in inductively powered wireless devices, such as biomedical implants, radio-frequency identification (RFID) tags, and smartcards to generate an on-chip dc supply. Various(More)