Mayron Faria Oliveira

  • Citations Per Year
Learn More
Nitric oxide (NO) can temporally and spatially match microvascular oxygen (O(2)) delivery (Qo(2mv)) to O(2) uptake (Vo(2)) in the skeletal muscle, a crucial adjustment-to-exercise tolerance that is impaired in chronic heart failure (CHF). To investigate the effects of NO bioavailability induced by sildenafil intake on muscle Qo(2mv)-to-O(2) utilization(More)
BACKGROUND The rate of change (Δ) in cerebral oxygenation (COx) during exercise is influenced by blood flow and arterial O(2) content (CaO(2)). It is currently unclear whether ΔCOx would (i) be impaired during exercise in patients with chronic obstructive pulmonary disease (COPD) who do not fulfil the current criteria for long-term O(2) therapy but present(More)
Impairment in oxygen (O2) delivery to the central nervous system ("brain") and skeletal locomotor muscle during exercise has been associated with central and peripheral neuromuscular fatigue in healthy humans. From a clinical perspective, impaired tissue O2 transport is a key pathophysiological mechanism shared by cardiopulmonary diseases, such as chronic(More)
BACKGROUND It is currently unknown whether potential haemodynamic improvements induced by non-invasive ventilation (NIV) would positively impact upon cerebral oxygenation (COx) in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). OBJECTIVE To investigate the effects of NIV on exercise COx in COPD patients presenting with(More)
BACKGROUND Exercise is essential for patients with heart failure as it leads to a reduction in morbidity and mortality as well as improved functional capacity and oxygen uptake (v̇O2). However, the need for an experienced physiologist and the cost of the exam may render the cardiopulmonary exercise test (CPET) unfeasible. Thus, the six-minute walk test(More)
Introduction: Heart failure (HF) is a complex syndrome in which effort limitation is associated with deterioration of peripheral musculature. Improving survival rates among these patients have led to the appearance of cases in which other pathologies are associated with HF, such as peripheral vascular insufficiency (PVI). The combination of these two(More)
Cerebral blood flow (CBF) and oxygenation (COx) are generally well-preserved in COPD. It is unknown whether prevalent cardiovascular co-morbidities, such as heart failure, may impair CBF and COx responses to exertion. Eighteen males with moderate-to-severe COPD (8 with and 10 without overlapping heart failure) underwent a progressive exercise test with(More)
Heart failure, a prevalent and disabling co-morbidity of COPD, may impair cardiac output and muscle blood flow thereby contributing to exercise intolerance. To investigate the role of impaired central and peripheral hemodynamics in limiting exercise tolerance in COPD-heart failure overlap, cycle ergometer exercise tests at 20% and 80% peak work rate were(More)
Hypocapnia and endothelial dysfunction might impair microvascular cerebral blood flow (CBFmicr) and cerebrovascular reactivity to CO2 (CVRCO2). Pulmonary arterial hypertension (PAH) is characteristically associated with chronic alveolar hyperventilation and microvascular endothelial dysfunction. We therefore determined CBFmicr (pre-frontal blood flow index(More)