Mayron F. Oliveira

Learn More
Impairment in oxygen (O2) delivery to the central nervous system ("brain") and skeletal locomotor muscle during exercise has been associated with central and peripheral neuromuscular fatigue in healthy humans. From a clinical perspective, impaired tissue O2 transport is a key pathophysiological mechanism shared by cardiopulmonary diseases, such as chronic(More)
Hypocapnia and endothelial dysfunction might impair microvascular cerebral blood flow (CBFmicr) and cerebrovascular reactivity to CO2 (CVRCO2). Pulmonary arterial hypertension (PAH) is characteristically associated with chronic alveolar hyperventilation and microvascular endothelial dysfunction. We therefore determined CBFmicr (pre-frontal blood flow index(More)
Cerebral blood flow (CBF) and oxygenation (COx) are generally well-preserved in COPD. It is unknown whether prevalent cardiovascular co-morbidities, such as heart failure, may impair CBF and COx responses to exertion. Eighteen males with moderate-to-severe COPD (8 with and 10 without overlapping heart failure) underwent a progressive exercise test with(More)
BACKGROUND Exercise is essential for patients with heart failure as it leads to a reduction in morbidity and mortality as well as improved functional capacity and oxygen uptake (v̇O2). However, the need for an experienced physiologist and the cost of the exam may render the cardiopulmonary exercise test (CPET) unfeasible. Thus, the six-minute walk test(More)
  • 1