Learn More
WNT, RAS or phosphoinositide 3-kinase signaling pathways control specific stages of ovarian follicular development. To analyze the functional interactions of these pathways in granulosa cells during follicular development in vivo, we generated specific mutant mouse models. Stable activation of the WNT signaling effector β-catenin (CTNNB1) in granulosa cells(More)
Although angiogenesis has been proposed as a therapeutic target for the treatment of ovarian granulosa cell tumor (GCT), its potential has not been evaluated in controlled studies. To do so, we used the Pten (tm1Hwu/tm1Hwu); Ctnnb1 (tm1Mmt/+);Amhr2 (tm3(cre)Bhr/+) (PCA) mouse model, which develops GCTs that mimic the advanced disease in women. A monoclonal(More)
Recent evidence has suggested that vascular endothelial growth factor A (VEGFA) is an important regulator of ovarian follicle development and survival. Both LH and FSH regulate Vegfa expression in granulosa cells and signal via the transcription factor hypoxia inducible factor 1 (HIF1). To further study the mechanism of action of HIF1 in the regulation of(More)
Few targeted therapies have been developed for ovarian granulosa cell tumor (GCT), even though it represents 5% of all malignant ovarian tumors in women. As misregulation of PI3K/AKT signaling has been implicated in GCT development, we hypothesized that the AKT signaling effector mammalian target of rapamycin (mTOR) may play a role in the pathogenesis of(More)
Valosin containing protein (VCP) is a critical mediator of protein homeostasis and may represent a valuable therapeutic target for several forms of cancer. Overexpression of VCP occurs in many cancers, and often in a manner correlating with malignancy and poor outcome. Here, we analyzed VCP expression in canine lymphoma and assessed its potential as a(More)
  • 1