Mayra Osorio

Learn More
Synchrotron emission is commonly found in relativistic jets from active galactic nuclei (AGNs) and microquasars, but so far its presence in jets from young stellar objects (YSOs) has not been proved. Here, we present evidence of polarized synchrotron emission arising from the jet of a YSO. The apparent magnetic field, with strength of ~0.2 milligauss, is(More)
It has been proposed that some hot molecular cores (HMCs) harbor a young embedded massive star, which heats an infalling envelope and accretes mass at a rate high enough to “choke off” an incipient HII region. This class of HMCs would mark the youngest phase known of massive star formation. In order to test this hypothesis, we model this type of object(More)
We present L and J-band high-contrast observations of HD169142, obtained with the VLT/NACO AGPM vector vortex coronagraph and the Gemini Planet Imager, respectively. A source located at 0”.156±0”.032 north of the host star (PA=7.4±11.3) appears in the final reduced L image. At the distance of the star (∼145 pc), this angular separation corresponds to a(More)
We present observations of continuum emission in the MIR to mm wavelength range, complemented with ammonia observations, of the dense core ahead of the radio Herbig Haro object HH 80N, found in the GGD 27 region. The continuum emission in all the observed bands peaks at the same position, consistent with the presence of an embedded object, HH 80N-IRS1,(More)
We carried out multiwavelength (0.7–5 cm), multi-epoch (1994–2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, 7 of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free–free(More)
We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument onboard the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 μm and 160 μm(More)
The Herschel Orion Protostar Survey obtained well-sampled 1.2 – 870 μm spectral energy distributions (SEDs) of over 300 protostars in the Orion molecular clouds, home to most of the young stellar objects (YSOs) in the nearest 500 pc. We plot the bolometric luminosities and temperatures for 330 Orion YSOs, 315 of which have bolometric temperatures(More)
Star forming regions are expected to show linear proper motions due to the relative motion of the Sun with respect to the region. These proper motions appear superposed to the proper motions expected in features associated with mass ejection from the young stellar objects embedded in them. Therefore, it is necessary to have a good knowledge of the proper(More)
We model the Class I source L1551 IRS 5, adopting a flattened infalling envelope surrounding a binary disk system and a circumbinary disk. With our composite model, we calculate self-consistently the spectral energy distribution of each component of the L1551 IRS 5 system, using additional constraints from recent observations by ISO, the water ice feature(More)
We present Very Large Array observations at 7 mm of the sources IRAS 2A, IRAS 2B, MMS2, MMS3 and SVS 13, in the NGC1333 region. SVS 13 is a young close binary system whose components are separated by 65 AU in projection. Our high angular resolution observations reveal that only one of the components of the SVS 13 system (VLA 4B) is associated with(More)