Learn More
This paper studies Regularized Discriminant Analysis (RDA) in the context of face recognition. We check RDA sensitivity to different photometric preprocessing methods and compare its performance to other classifiers. Our study shows that RDA is better able to extract the relevant discriminatory information from training data than the other classifiers(More)
– In this paper we seek a Gaussian mixture model (GMM) of the class-conditional densities for plug-in Bayes classification. We propose a method for setting the number of the components and the covariance matrices of the class-conditional GMMs. It compromises between simplicity of the model selection based on the Bayesian information criterion (BIC) and the(More)
Sammon's mapping is conventionally used for exploratory data projection, and as such is usually inapplicable for classification. In this paper we apply a neural network (NN) implementation of Sammon's mapping to classification by extracting an arbitrary number of projections. The projection map and classification accuracy of the mapping are compared with(More)
The projection maps and derived classification accuracies of a neural network (NN) implementation of Sammon's mapping, an auto-associative NN (AANN) and a multilayer perceptron (MLP) feature extractor are compared with those of the conventional principal component analysis (PCA). Tested on five real-world databases, the MLP provides the highest(More)
A recently published generalized growing and pruning (GGAP) training algorithm for radial basis function (RBF) neural networks is studied and modified. GGAP is a resource-allocating network (RAN) algorithm, which means that a created network unit that consistently makes little contribution to the network's performance can be removed during the training.(More)
A method for the linear discrimination of two classes is presented. It searches for the discriminant direction which maximizes the Patrick-Fisher (PF) distance between the projected class-conditional densities. It is a nonparametric method, in the sense that the densities are estimated from the data. Since the PF distance is a highly nonlinear function, we(More)
Feature extraction has been always mutually studied for exploratory data projection and for classification. Feature extraction for exploratory data projection aims for data visualization by a projection of a high-dimensional space onto two or three-dimensional space, while feature extraction for classification generally requires more than two or three(More)
The initialisation of a neural network implementation of Sammon's mapping, either randomly or based on the principal components (PCs) of the sample covariance matrix, is experimentally investigated. When PCs are employed, fewer experiments are needed and the network configuration can be set precisely without trial-and-error experimentation. Tested on five(More)