Mayada K. Kansour

Learn More
Biofilms harboring simultaneously anoxygenic and oxygenic phototrophic bacteria, diazotrophic bacteria, and hydrocarbon-utilizing bacteria were established on glass slides suspended in pristine and oily seawater. Via denaturing gradient gel electrophoresis analysis on PCR-amplified rRNA gene sequence fragments from the extracted DNA from biofilms, followed(More)
Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area(More)
Attempts to establish hydrocarbonoclastic biofilms that could be applied in waste-hydrocarbon removal are still very rare. In this work, biofilms containing hydrocarbonoclastic bacteria were successfully established on glass slides by submerging them in oil-free and oil-containing sewage effluent for 1 month. Culture-dependent analysis of(More)
Pristine and oil-contaminated desert soil samples from Kuwait harbored between 10 and 100 cells g−1 of hydrocarbonoclastic bacteria capable of growth at 50 °C. Enrichment by incubation of moistened soils for 6 months at 50 °C raised those numbers to the magnitude of 103 cells g−1. Most of these organisms were moderately thermophilic and belonged to the(More)
Biofouling material samples from the Arabian (Persian) Gulf, used as inocula in batch cultures, brought about crude oil and pure-hydrocarbon removal in a mineral medium. Without any added nitrogen fertilizers, the hydrocarbon-removal values were between about 10 and 50 %. Fertilization with NaNO3 alone or together with a mixture of the vitamins thiamine,(More)
Prokaryotic communities in pristine and oil-contaminated desert soil, seawater, and hypersaline coastal soil were analyzed using culture-dependent and culture-independent approaches. The former technique was the dilution-plating method. For the latter, total genomic DNA was extracted and the 16S rRNA genes were amplified using a universal bacterial primer(More)
The oil-producing Arabian Gulf states have hot summer seasons of about 7-month in length. Therefore, environmental oil spills should be bioremediated by the activity of indigenous, hydrocarbonoclastic (hydrocarbon-degrading) microorganisms with optimum growth at about 50 °C. Soils in such arid countries harbor thermophilic bacteria, whose oil-consumption(More)
When crude oil samples were shaken (200 rpm) in seawater samples from the Arabian Gulf at 30 °C, usually oil-gels were produced spontaneously leaving the water quite clear. The gelators could probably be based on cholesteryl derivatives. Microscopic examination of the established gels revealed nanofibrellar structures similar to those described by earlier(More)
  • 1