May T. Aung-Htut

Learn More
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to(More)
This chapter reviews the role of mitochondria and of mitochondrial metabolism in the aging processes of yeast and the existing evidence for the "mitochondrial theory of aging mitochondrial theory of aging ". Mitochondria are the major source of ATP in the eukaryotic cell but are also a major source of reactive oxygen species reactive oxygen species (ROS)(More)
In Saccharomyces cerevisiae, mitochondrial morphology changes when cells are shifted between nonfermentative and fermentative carbon sources. Here, we show that cells of S. cerevisiae grown in different glucose concentrations display different mitochondrial morphologies. The morphology of mitochondria in the cells growing in 0.5% glucose was similar to that(More)
Increased reactive oxygen species (ROS) are a feature of aging cells, but little is known about when ROS generation begins as cells age. Here we show how ROS change in Saccharomyces cerevisiae cells throughout their early replicative life span using the fluorescent ROS indicator dihydroethidium (DHE), which has some specificity for the superoxide anion.(More)
  • 1