Learn More
Intracellular recordings were performed in area CA1 pyramidal cells of rat hippocampal slices to determine the effects of certain steroids on inhibitory postsynaptic potentials/currents (IPSP/Cs) mediated by GABA(A) receptors. Following application of the steroids 5alpha-pregnan-3alpha,21-diol-20-one (5alpha-THDOC), alphaxalone and(More)
Studies on isolated perfused tubules of the tiger salamander (Ambystoma tigrinum) have shown that the distal nephron is heterogeneous with respect to function (Stoner, 1977). In this study, the initial portion of the distal tubule (diluting segment) exhibited a voltage, positive in the lumen, and a net absorption of chloride. Since the chloride was(More)
When isolated apical membrane vesicles prepared from cultured A6 epithelia were incubated in vitro with the methyl donor S-adenosylmethionine, the control rate of amiloride-inhibitable sodium transport was doubled. The methylation inhibitors 3-deazaadenosine and S-adenosyl homocysteine returned the S-adenosyl-methionine-stimulated sodium transport to(More)
High resistance epithelia actively transport sodium from the luminal side to the blood. Aldosterone and vasopressin stimulate this sodium transport system; the diuretic drug amiloride inhibits it in a reversible fashion. The first step in the transepithelial transport of Na+ is the facilitated diffusion of Na+ across the apical membrane via Na+-specific,(More)
Two recessive mutations of Paramecium tetraurelia confer sensitivity to potassium: While wild-type cells survive when up to 30 mM KCl is added to their growth medium, mutants cease to grow and die when levels of added KCl reach 20-25 mM. Similar sensitivities are seen to Rb+ and Cs+, but not to Na+. Swimming behavior of mutants is indistinguishable from(More)
The relaxin-like RXFP1 ligand-receptor system has important functions in tumor growth and tissue invasion. Recently, we have identified the secreted protein, CTRP8, a member of the C1q/tumor necrosis factor-related protein (CTRP) family, as a novel ligand of the relaxin receptor, RXFP1, with functions in brain cancer. Here, we review the role of CTRP(More)
  • 1