Maxine De Butte-Smith

Learn More
Whereas the ability of oestradiol and insulin-like growth factor (IGF)-1 to afford neuroprotection against ischaemia-induced neuronal death in young female and male rodents is well established, the impact of IGF-1 in middle-aged animals is largely unknown. The present study assessed the efficacy of oestradiol and IGF-1 with respect to reducing neuronal(More)
BACKGROUND Pretreatment with 17beta-estradiol (E2) is profoundly neuroprotective in young animals subjected to focal and global ischemia. However, whether E2 retains its neuroprotective efficacy in aging animals, especially when administered after brain insult, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS We examined the neuroprotective effects of(More)
Transient global ischemia induces selective, delayed neuronal death of pyramidal neurons in the hippocampal CA1. Whereas long term treatment of middle-aged female rats with estradiol at physiological doses ameliorates neuronal death, the signaling pathways that mediate the neuroprotection are, as yet, unknown. Protein kinase B (Akt) and downstream(More)
Transient global ischemia induces selective, delayed neuronal death in the hippocampal CA1 and cognitive deficits. Physiological levels of 17beta-estradiol ameliorate ischemia-induced neuronal death and cognitive impairments in young animals. In view of concerns regarding hormone therapy in postmenopausal women, we investigated whether chronic estradiol(More)
Global forebrain ischemia arising from brief occlusion of the carotid arteries in gerbils produces selective hippocampal CA1 neuronal loss. Pre-treatment with 17beta-estradiol ameliorates, in part, ischemia-induced damage in young animals. Because stroke and cardiac arrest are more likely to occur among elderly individuals, neuroprotective studies in older(More)
  • 1