Learn More
Living organisms are robust to a great variety of genetic changes. Gene regulation networks and metabolic pathways self-organize and reaccommodate to make the organism perform with stability and reliability under many point mutations, gene duplications and gene deletions. At the same time, living organisms are evolvable, which means that these kind of(More)
In contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical(More)
We investigate the conditions that produce a phase transition from an ordered to a disordered state in a family of models of two-dimensional elements with a ferromagnetic-like interaction. This family is defined to contain under the same framework, among others, the XY-model and the Self-Driven Particles Model introduced by Vicsek et al. Each model is(More)
The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability(More)
Intermittent behavior is shown to appear in a system of self-driven interacting particles. In the ordered phase, most particles move in the same approximate direction, but the system displays a series of intermittent bursts during which the order is temporarily lost. This intermittency is characterized and its statistical properties are found analytically(More)
In this work we analyze the stochastic dynamics of the Kauffman model evolving under the influence of noise. By considering the average crossing time between two distinct trajectories, we show that different Kauffman models exhibit a similar kind of behavior, even when the structure of their basins of attraction is quite different. This can be considered as(More)
Boolean threshold networks have recently been proposed as useful tools to model the dynamics of genetic regulatory networks, and have been successfully applied to describe the cell cycles of S. cerevisiae and S. pombe. Threshold networks assume that gene regulation processes are additive. This, however, contrasts with the mechanism proposed by S. Kauffman(More)
Understanding how spermatozoa approach the egg is a central biological issue. Recently a considerable amount of experimental evidence has accumulated on the relation between oscillations in intracellular calcium ion concentration ([Ca2+]i) in the sea urchin sperm flagellum, triggered by peptides secreted from the egg, and sperm motility. Determination of(More)