Maxime Derisbourg

Learn More
While the spatiotemporal development of Tau pathology has been correlated with occurrence of cognitive deficits in Alzheimer's patients, mechanisms underlying these deficits remain unclear. Both brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor TrkB play a critical role in hippocampus-dependent synaptic plasticity and memory. When(More)
Tau pathology found in Alzheimer's disease (AD) is crucial in cognitive decline. Epidemiologic evidences support that habitual caffeine intake prevents memory decline during aging and reduces the risk to develop Alzheimer's disease. So far, experimental studies addressed the impact of caffeine in models mimicking the amyloid pathology of AD. However, in(More)
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by extracellular accumulation of amyloid deposits and intracellular neurofibrillary tangles (NFT) composed of hyperphosphorylated Tau proteins. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor playing a critical role in hippocampal synaptic plasticity and memory and(More)
Tau is a central player in Alzheimer's disease (AD) and related Tauopathies, where it is found as aggregates in degenerating neurons. Abnormal post-translational modifications, such as truncation, are likely involved in the pathological process. A major step forward in understanding the role of Tau truncation would be to identify the precise cleavage sites(More)
Age-related cognitive decline and neurodegenerative diseases are a growing challenge for society. Accumulation of tau pathology has been proposed to partially contribute to these impairments. This study provides a behavioral characterization during aging of transgenic mice bearing tau mutations. THY-Tau22 mice were evaluated at ages wherein tau(More)
  • 1