Maxime Boulet-Audet

Learn More
Plant toxins are sequestered by many animals and the toxicity is frequently advertised by aposematic displays to deter potential predators. Such 'unpalatability by appropriation' is common in many invertebrate groups and also found in a few vertebrate groups. However, potentially lethal toxicity by acquisition has so far never been reported for a placental(More)
Lepidopteran silks number in the thousands and display a vast diversity of structures, properties and industrial potential. To map this remarkable biochemical diversity, we present an identification and screening method based on the infrared spectra of native silk feedstock and cocoons. Multivariate analysis of over 1214 infrared spectra obtained from 35(More)
The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology(More)
Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks(More)
The use of biotherapeutics, such as monoclonal antibodies, has markedly increased in recent years. It is thus essential that biotherapeutic production pipelines are as efficient as possible. For the production process, one of the major concerns is the propensity of a biotherapeutic antibody to aggregate. In addition to reducing bioactive material recovery,(More)
Whilst rheology is the reference technique to study the mechanical properties of unspun silk, we know little of the structure and the dynamics that generate them. By coupling infrared spectroscopy and shearing forces to study silk fibroin conversion, we are introducing a novel tool to address this gap in our knowledge. Here the silk conversion process has(More)
In the next 10 years, the pharmaceutical industry anticipates that revenue from biotherapeutics will overtake those generated from small drug molecules. Despite effectively treating a range of chronic and life-threatening diseases, the high cost of biotherapeutics limits their use. For biotherapeutic monoclonal antibodies (mAbs), an important production(More)
In recent years many monoclonal antibodies (mAb) have entered the biotherapeutics market, offering new treatments for chronic and life-threatening diseases. Protein A resin captures monoclonal antibody (mAb) effectively, but the binding capacity decays over repeated purification cycles. On an industrial scale, replacing fouled Protein A affinity(More)
Silk's outstanding mechanical properties and energy efficient solidification mechanisms provide inspiration for biomaterial self-assembly as well as offering a diverse platform of materials suitable for many biotechnology applications. Experiments now reveal that the mulberry silkworm Bombyx mori secretes its silk in a practically "unspun" state that(More)
  • 1