Learn More
Two major components are required for a successful prediction of the three-dimensional structure of peptides and proteins: an efficient global optimization procedure which is capable of finding an appropriate local minimum for the strongly anisotropic function of hundreds of variables, and a set of free energy components for a protein molecule in solution(More)
We developed a new computational algorithm for the accurate identification of ligand binding envelopes rather than surface binding sites. We performed a large scale classification of the identified envelopes according to their shape and physicochemical properties. The predicting algorithm, called PocketFinder, uses a transformation of the Lennard-Jones(More)
We have performed a comparative assessment of several programs for flexible molecular docking: DOCK 4.0, FlexX 1.8, AutoDock 3.0, GOLD 1.2 and ICM 2.8. This was accomplished using two different studies: docking experiments on a data set of 37 protein-ligand complexes and screening a library containing 10,037 entries against 11 different proteins. The(More)
Eight protein-ligand complexes were simulated by using global optimization of a complex energy function, including solvation, surface tension, and side-chain entropy in the internal coordinate space of the flexible ligand and the receptor side chains [Abagyan, R.A., Totrov, M.M. J. Mol. Biol. 235: 983-1002, 1994]. The procedure uses two types of efficient(More)
The association of two biological macromolecules is a fundamental biological phenomenon and an unsolved theoretical problem. Docking methods for ab initio prediction of association of two independently determined protein structures usually fail when they are applied to a large set of complexes, mostly because of inaccuracies in the scoring function and/or(More)
The ICM-DISCO (Docking and Interface Side-Chain Optimization) protein-protein-docking method is a direct stochastic global energy optimization from multiple starting positions of the ligand. The first step is performed by docking of a rigid all-atom ligand molecule to a set of soft receptor potentials precalculated on a 0.5 A grid from realistic(More)
The fundamental event in biological assembly is association of two biological macromolecules. Here we present a successful, accurate ab initio prediction of the binding of uncomplexed lysozyme to the HyHel5 antibody. The prediction combines pseudo Brownian Monte Carlo minimization with a biased-probability global side-chain placement procedure. It was(More)
Coxiella burnetii is a highly infectious bacterium and potential agent of bioterrorism. However, it has not been studied as extensively as other biological agents, and very few of its proteins have been structurally characterized. To address this situation, we undertook a study of critical metabolic enzymes in C. burnetii that have great potential as drug(More)
Recent improvements in flexible docking technology may lead to a bigger role for computational methods in lead discovery. Although fast and accurate computational prediction of binding affinities for an arbitrary molecule is still beyond the limits of current methods, the docking and screening procedures can select small sets of likely lead candidates from(More)