Learn More
Here, we present MultiProt, a fully automated highly efficient technique to detect multiple structural alignments of protein structures. MultiProt finds the common geometrical cores between input molecules. To date, most methods for multiple alignment start from the pairwise alignment solutions. This may lead to a small overall alignment. In contrast, our(More)
Here we present a novel technique for the alignment of flexible proteins. The method does not require an a priori knowledge of the flexible hinge regions. The FlexProt algorithm simultaneously detects the hinge regions and aligns the rigid subparts of the molecules. Our technique is not sensitive to insertions and deletions. Numerous methods have been(More)
Here, we comment on the steadily increasing body of data showing that proteins with specificity actually bind ligands of diverse shapes, sizes, and composition. Such a phenomenon is not surprising when one considers that binding is a dynamic process with populations in equilibrium and that the shape of the binding site is strongly influenced by the(More)
Cryo-EM has become an increasingly powerful technique for elucidating the structure, dynamics, and function of large flexible macromolecule assemblies that cannot be determined at atomic resolution. However, due to the relatively low resolution of cryo-EM data, a major challenge is to identify components of complexes appearing in cryo-EM maps. Here, we(More)
Analysis of protein-ligand complexes and recognition of spatially conserved physico-chemical properties is important for the prediction of binding and function. Here, we present two webservers for multiple alignment and recognition of binding patterns shared by a set of protein structures. The first webserver, MultiBind(More)
We present a very efficient rigid "unbound" soft docking methodology, which is based on detection of geometric shape complementarity, allowing liberal steric clash at the interface. The method is based on local shape feature matching, avoiding the exhaustive search of the 6D transformation space. Our experiments at CAPRI rounds 1 and 2 show that although(More)
We present two algorithms which align flexible protein structures. Both apply efficient structural pattern detection and graph theoretic techniques. The FlexProt algorithm simultaneously detects the hinge regions and aligns the rigid subparts of the molecules. It does it by efficiently detecting maximal congruent rigid fragments in both molecules and(More)
FlexProt is a novel technique for the alignment of flexible proteins. Unlike all previous algorithms designed to solve the problem of structural comparisons allowing hinge-bending motions, FlexProt does not require an a priori knowledge of the location of the hinge(s). FlexProt carries out the flexible alignment, superimposing the matching rigid subpart(More)
Routinely used multiple-sequence alignment methods use only sequence information. Consequently, they may produce inaccurate alignments. Multiple-structure alignment methods, on the other hand, optimize structural alignment by ignoring sequence information. Here, we present an optimization method that unifies sequence and structure information. The alignment(More)