Learn More
We present an integrated approach for efficient characterization of intrinsically disordered proteins. Batch cell-free expression, fast data acquisition, automated analysis, and statistical validation with data resampling have been combined for achieving cost-effective protein expression, and rapid automated backbone assignment. The new methodology is(More)
Time-resolved experiments demand high resolution both in spectral dimensions and in time of the studied kinetic process. The latter requirement traditionally prohibits applications of the multidimensional experiments, which, although capable of providing invaluable information about structure and dynamics and almost unlimited spectral resolution, require(More)
Non-uniform sampling offers a dramatic increase in the power and efficiency of magnetic resonance techniques in chemistry, molecular structural biology, and other fields. Here we show that use of the causality property of an NMR signal is a general approach for major reduction of measuring time and quality improvement of the sparsely detected spectra.
Intrinsically disordered proteins are found extensively in cell signaling pathways where they often are targets of posttranslational modifications e.g. phosphorylation. Such modifications can sometimes induce or disrupt secondary structure elements present in the modified protein. CD79a and CD79b are membrane-spanning, signal-transducing components of the(More)
The Hha and TomB proteins from Escherichia coli form an oxygen-dependent toxin-antitoxin (TA) system. Here we show that YmoB, the Yersinia orthologue of TomB, and its single cysteine variant [C117S]YmoB can replace TomB as antitoxins in E. coli. In contrast to other TA systems, [C117S]YmoB transiently interacts with Hha (rather than forming a stable(More)
The balance between protein folding and misfolding is a crucial determinant of amyloid assembly. Transient intermediates that are sparsely populated during protein folding have been identified as key players in amyloid aggregation. However, due to their ephemeral nature, structural characterization of these species remains challenging. Here, using the power(More)
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients(More)
The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING(More)
The metalloprotease PrtV from Vibrio cholerae serves an important function for the ability of bacteria to invade the mammalian host cell. The protein belongs to the family of M6 proteases, with a characteristic zinc ion in the catalytic active site. PrtV constitutes a 918 amino acids (102 kDa) multidomain pre-pro-protein that undergoes several N- and(More)
Rapid development of sparse sampling methodology offers dramatic increase in power and efficiency of magnetic resonance techniques in medicine, chemistry, molecular structural biology, and other fields. We suggest to use available yet usually unexploited prior knowledge about the phase and the causality of the sparsely detected NMR signal as a general(More)