Learn More
Accelerated multi-dimensional NMR spectroscopy is a prerequisite for high-throughput applications, studying short-lived molecular systems and monitoring chemical reactions in real time. Non-uniform sampling is a common approach to reduce the measurement time. Here, a new method for high-quality spectra reconstruction from non-uniformly sampled data is(More)
Non-uniform sampling offers a dramatic increase in the power and efficiency of magnetic resonance techniques in chemistry, molecular structural biology, and other fields. Here we show that use of the causality property of an NMR signal is a general approach for major reduction of measuring time and quality improvement of the sparsely detected spectra.
The Eph receptor tyrosine kinases and their membrane-bound ephrin ligands control a diverse array of cell-cell interactions in the developing and adult organisms. During signal transduction across plasma membrane, Eph receptors, like other receptor tyrosine kinases, are involved in lateral dimerization and subsequent oligomerization presumably with proper(More)
Eph receptors are found in a wide variety of cells in developing and mature tissues and represent the largest family of receptor tyrosine kinases, regulating cell shape, movements, and attachment. The receptor tyrosine kinases conduct biochemical signals across plasma membrane via lateral dimerization in which their transmembrane domains play an important(More)
Time-resolved experiments demand high resolution both in spectral dimensions and in time of the studied kinetic process. The latter requirement traditionally prohibits applications of the multidimensional experiments, which, although capable of providing invaluable information about structure and dynamics and almost unlimited spectral resolution, require(More)
We present an integrated approach for efficient characterization of intrinsically disordered proteins. Batch cell-free expression, fast data acquisition, automated analysis, and statistical validation with data resampling have been combined for achieving cost-effective protein expression, and rapid automated backbone assignment. The new methodology is(More)
Intrinsically disordered proteins are found extensively in cell signaling pathways where they often are targets of posttranslational modifications e.g. phosphorylation. Such modifications can sometimes induce or disrupt secondary structure elements present in the modified protein. CD79a and CD79b are membrane-spanning, signal-transducing components of the(More)
Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal(More)
The balance between protein folding and misfolding is a crucial determinant of amyloid assembly. Transient intermediates that are sparsely populated during protein folding have been identified as key players in amyloid aggregation. However, due to their ephemeral nature, structural characterization of these species remains challenging. Here, using the power(More)
The Hha and TomB proteins from Escherichia coli form an oxygen-dependent toxin-antitoxin (TA) system. Here we show that YmoB, the Yersinia orthologue of TomB, and its single cysteine variant [C117S]YmoB can replace TomB as antitoxins in E. coli. In contrast to other TA systems, [C117S]YmoB transiently interacts with Hha (rather than forming a stable(More)