Maxim Durach

Learn More
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an(More)
We establish the principal limits for the nanoconcentration of the THz radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of R(0) approximately lambda(0) to the final size of R = 100- 250 nm can be achieved,(More)
In this paper, we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing the dressed interaction explicitly for an important example of metal–dielectric nanoshells which exhibits a rich resonant(More)
We predict a dynamic metallization effect where an ultrafast (single-cycle) optical pulse with a ≲1 V/Å field causes plasmonic metal-like behavior of a dielectric film with a few-nm thickness. This manifests itself in plasmonic oscillations of polarization and a significant population of the conduction band evolving on a ~1 fs time scale. These phenomena(More)
Here, for the first time we predict a giant surface-plasmon-induced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. In nanowires, this giant SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields up to approximately 10(5)-10(6) V/cm. The giant SPIDER is(More)
Strong modification of spontaneous emission of Eu(3+) ions placed in close vicinity to thin and thick gold and silver films was clearly demonstrated in a microscope setup separately for electric and magnetic dipole transitions. We have shown that the magnetic transition was very sensitive to the thickness of the gold substrate and behaved distinctly(More)
Gold nanostrip arrays exhibit collective plasmonic oscillations analogous to surface plasmon-polaritons in continuous films with a spatially modulated profile. Similarities and differences in optical behavior of continuous and discontinuous systems are studied experimentally and theoretically.