Maxim Dolgushev

Learn More
Scale-free networks are structures, whose nodes have degree distributions that follow a power law. Here we focus on the dynamics of semiflexible scale-free polymer networks. The semiflexibility is modeled in the framework of [M. Dolgushev and A. Blumen, J. Chem. Phys. 131, 044905 (2009)], which allows for tree-like networks with arbitrary architectures to(More)
One of the most crucial domains of interdisciplinary research is the relationship between the dynamics and structural characteristics. In this paper, we introduce a family of small-world networks, parameterized through a variable d controlling the scale of graph completeness or of network clustering. We study the Laplacian eigenvalues of these networks,(More)
We study the orientational properties of labeled segments in semiflexible dendrimers making use of the viscoelastic approach of Dolgushev and Blumen [J. Chem. Phys. 131, 044905 (2009)]. We focus on the segmental orientational autocorrelation functions (ACFs), which are fundamental for the frequency-dependent spin-lattice relaxation times T1(ω). We show that(More)
One of the fundamental issues in polymer physics is to reveal the relation between the structures of macromolecules and their various properties. In this report, we study the dynamical properties of a family of deterministically growing semiflexible treelike polymer networks, which are built in an iterative method. From the analysis of the corresponding(More)
We study the dynamics of semiflexible hyperbranched macromolecules having only dendritic units and no linear spacers, while the structure of these macromolecules is modeled through T-fractals. We construct a full set of eigenmodes of the dynamical matrix, which couples the set of Langevin equations. Based on the ensuing relaxation spectra, we analyze the(More)
We study the dynamics of local bond orientation in regular hyperbranched polymers modeled by Vicsek fractals. The local dynamics is investigated through the temporal autocorrelation functions of single bonds and the corresponding relaxation forms of the complex dielectric susceptibility. We show that the dynamic behavior of single segments depends on their(More)
  • 1