Learn More
The nature of microglia fascinated many prominent researchers in the 19th and early 20th centuries, and in a classic treatise in 1932, Pio del Rio-Hortega formulated a number of concepts regarding the function of these resident macrophages of the brain parenchyma that remain relevant to this day. However, a renaissance of interest in microglia occurred(More)
Cytokine (TNF-alpha/beta, IL-1beta, IL-6, IL-18, IL-10, and IFN-alpha/beta/gamma) and chemokine (IL-8, IP-10, MCP-1, MIP-1alpha/beta, and RANTES) production during herpes simplex virus (HSV) 1 infection of human brain cells was examined. Primary astrocytes as well as neurons were found to support HSV replication, but neither of these fully permissive cell(More)
Long-term neurological sequela is common among herpes simplex encephalitis (HSE) survivors. Animal models for HSE are used to investigate mechanisms of acute disease, but little has been done to model chronic manifestations of HSE. The current study presents a detailed, systematic analysis of chronic neuropathology, including characterization of topography(More)
In recent years, West Nile virus (WNV) has emerged as a major cause of encephalitis in the United States. However, the neuropathogenesis of this flavivirus is poorly understood. In the present study, the authors used primary human brain cell cultures to investigate two neuropathogenic features: viral replication and induction of cytokines. Although neurons(More)
Cytomegalovirus (CMV) is a major cause of congenital brain disease, and its neuropathogenesis may be related to viral infection of rapidly dividing, susceptible neural precursor cells (NPCs). In the present study, we evaluated the susceptibility of human fetal brain-derived NPCs (nestin(+), A2B5(+), CD133(+)) to infection with CMV. Data derived from these(More)
Neural precursor cells (NPCs) are self-renewing, multipotent progenitors that give rise to neurons, astrocytes and oligodendrocytes in the central nervous system (CNS). Fetal NPCs have attracted attention for their potential use in studying normal CNS development. Several studies of rodent neural progenitors have suggested that chemokines and their(More)
Glial cells function as sensors for infection within the brain and produce cytokines to limit viral replication and spread. We examined both cytokine (TNF-alpha, IL-1beta, and IL-6) and chemokine (MCP-1, MIP-1alpha, RANTES, and IL-8) production by primary human glial cells in response to cytomegalovirus (CMV). Although CMV-infected astrocytes did not(More)
Cytomegalovirus (CMV) is the leading transmittable cause of congenital brain abnormalities in children and infection results in fatal ventriculoencephalitis in advanced acquired immunodeficiency syndrome (AIDS) patients. Pathology associated with CMV brain infection is seen predominantly in the periventricular region, an area known to harbor neural stem(More)
Although production of reactive nitrogen and reactive oxygen species (RNS and ROS) is a component of innate defense against viral infection, their overproduction in the brain may also lead to deleterious consequences. To investigate potential immunopathologic roles of oxidative stress during herpes encephalitis, the authors examined the expression kinetics(More)
BACKGROUND Congenital cytomegalovirus (CMV) brain infection causes serious neuro-developmental sequelae including: mental retardation, cerebral palsy, and sensorineural hearing loss. But, the mechanisms of injury and pathogenesis to the fetal brain are not completely understood. The present study addresses potential pathogenic mechanisms by which this virus(More)