Maxie M. Roessler

Learn More
The enterobacterium Escherichia coli synthesizes two H(2) uptake enzymes, Hyd-1 and Hyd-2. We show using precise electrochemical kinetic measurements that the properties of Hyd-1 and Hyd-2 contrast strikingly, and may be individually optimized to function under distinct environmental conditions. Hyd-2 is well suited for fast and efficient catalysis in more(More)
Salmonella enterica serovar Typhimurium is a Gram negative bacterial pathogen and a common cause of food-borne illness. Molecular hydrogen has been shown to be a key respiratory electron donor during infection and H(2) oxidation can be catalysed by three genetically-distinct [NiFe] hydrogenases. Of these, hydrogenases-1 (Hyd-1) and Hyd-2 have(More)
An important clue to the mechanism for O(2) tolerance of certain [NiFe]-hydrogenases is the conserved presence of a modified environment around the iron-sulfur cluster that is proximal to the active site. The O(2)-tolerant enzymes contain two cysteines, located at opposite ends of this cluster, which are glycines in their O(2)-sensitive counterparts. The(More)
The crystal structure of the membrane-bound O(2)-tolerant [NiFe]-hydrogenase 1 from Escherichia coli (EcHyd-1) has been solved in three different states: as-isolated, H(2)-reduced, and chemically oxidized. As very recently reported for similar enzymes from Ralstonia eutropha and Hydrogenovibrio marinus, two supernumerary Cys residues coordinate the proximal(More)
In oxidative phosphorylation, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. Complex I contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters, in several subunits, to transfer the electrons to quinone. Understanding coupled(More)
The unusual [4Fe-3S] cluster proximal to the active site plays a crucial role in allowing a class of [NiFe]-hydrogenases to function in the presence of O(2) through its unique ability to undergo two rapid, consecutive one-electron transfers. This property helps to neutralize reactive oxygen species. Mechanistic details and the role of the medial and distal(More)
Complex I (NADH:ubiquinone oxidoreductase) is critical for respiration in mammalian mitochondria. It oxidizes NADH produced by the Krebs' tricarboxylic acid cycle and β-oxidation of fatty acids, reduces ubiquinone, and transports protons to contribute to the proton-motive force across the inner membrane. Complex I is also a significant contributor to(More)
"Hyd-1", produced by Escherichia coli , exemplifies a special class of [NiFe]-hydrogenase that can sustain high catalytic H(2) oxidation activity in the presence of O(2)-an intruder that normally incapacitates the sulfur- and electron-rich active site. The mechanism of "O(2) tolerance" involves a critical role for the Fe-S clusters of the electron relay,(More)
Protein film electrochemistry (PFE) is providing cutting-edge insight into the chemical principles underpinning biological hydrogen. Attached to an electrode, many enzymes exhibit "reversible" electrocatalytic behavior, meaning that a catalyzed redox reaction appears reversible or quasi-reversible when viewed by cyclic voltammetry. This efficiency is most(More)
Despite extensive studies on [NiFe]-hydrogenases, the mechanism by which these enzymes produce and activate H2 so efficiently remains unclear. A well-known EPR-active state produced under H2 and known as Ni-C is assigned as a Ni(III)-Fe(II) species with a hydrido ligand in the bridging position between the two metals. It has long been known that(More)