Max-Olivier Hongler

Learn More
We study, in the fluid flow framework, the cooperative dynamics of a buffered production line in which the production rate of each work-cell does depend on the content of its adjacent buffers. Such state dependent fluid queueing networks are typical for people based manufacturing systems where human operators adapt their working rates to the observed(More)
In this paper, we present a distributed control strategy, enabling agents to converge onto and travel along a consensually selected curve among a class of closed planar curves. Individual agents identify the number of neighbors within a finite circular sensing range and obtain information from their neighbors through local communication. The information is(More)
We consider a collection of N homogeneous interacting Brownian agents evolving on the plane. The time continuous individual dynamics are jointly driven by mixed canonical-dissipative (MCD) type dynamics and White Gaussian noise sources. Each agent is permanently at the center of a finite size observation disk D ρ. Steadily with time, agents count the number(More)
The mean-field dynamics of a collection of stochastic agents evolving under local and nonlocal interactions in one dimension is studied via analytically solvable models. The nonlocal interactions between agents result from (a) a finite extension of the agents interaction range and (b) a barycentric modulation of the interaction strength. Our modeling(More)