Max Mutchler

Learn More
Pluto's first known satellite, Charon, was discovered in 1978. It has a diameter (approximately 1,200 km) about half that of Pluto, which makes it larger, relative to its primary, than any other moon in the Solar System. Previous searches for other satellites around Pluto have been unsuccessful, but they were not sensitive to objects less, similar150 km in(More)
The Pluto system was recently explored by NASA's New Horizons spacecraft, making closest approach on 14 July 2015. Pluto's surface displays diverse landforms, terrain ages, albedos, colors, and composition gradients. Evidence is found for a water-ice crust, geologically young surface units, surface ice convection, wind streaks, volatile transport, and(More)
We obtained Hubble Space Telescope images of 2 Pallas in September 2007 that reveal distinct color and albedo variations across the surface of this large asteroid. Pallas's shape is an ellipsoid with radii of 291 (+/-9), 278 (+/-9), and 250 (+/-9) kilometers, implying a density of 2400 (+/-250) kilograms per cubic meter-a value consistent with a body that(More)
Observations of Pluto and its solar-tidal stability zone were made using the Advanced Camera for Surveys’ (ACS) Wide Field Channel (WFC) on the Hubble Space Telescope on UT 2005 May 15 and UT 2005 May 18. Two small satellites of Pluto, provisionally designated S/2005 P 1 and S/2005 P 2, were discovered, as discussed by Weaver et al. (2006) and Stern et al.(More)
Most inner main-belt asteroids are primitive rock and metal bodies in orbit about the Sun between Mars and Jupiter. Disruption, through high-velocity collisions or rotational spin-up, is believed to be the primary mechanism for the production and destruction of small asteroids and a contributor to dust in the Sun's zodiacal cloud, while analogous collisions(More)
The two newly discovered satellites of Pluto (P1 and P2) have masses that are small compared to both Pluto and Charon-that is, between 5 x 10(-4) and 1 x 10(-5) of Pluto's mass, and between 5 x 10(-3) and 1 x 10(-4) of Charon's mass. This discovery, combined with the constraints on the absence of more distant satellites of Pluto, reveal that Pluto and its(More)
We present recent Hubble Space Telescope observations of the inner filament of Centaurus A, using the new Wide Field Camera 3 (WFC3) F225W, F657N and F814W filters. We find a young stellar population near the south-west tip of the filament. Combining the WFC3 dataset with archival Advanced Camera for Surveys (ACS) F606W observations, we are able to(More)
The LMC is ideal for studying the co-evolution of planetary nebulae (PNe) and their central stars, in that the debilitating uncertainties of the Galactic PN distance scale and selection biases from attenuation by interstellar dust do not apply. We present images and analyze slit-less spectra which were obtained in a survey of Large Magellanic Cloud PNe.(More)
We present a set of tasks developed to process dithered undersampled images. These procedures allow one to easily determine the offsets between images and then combine the images using Variable-Pixel Linear Reconstruction, otherwise know as “drizzle”. This algorithm, originally developed for the combination of the images in the Hubble Deep Field(Williams et(More)
A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it(More)