Max L. N. Gonçalves

Learn More
This paper describes a regularized variant of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex programs. It is shown that the pointwise iteration-complexity of the new method is better than the corresponding one for the standard ADMM method and that, up to a logarithmic term, is identical to the ergodic(More)
This paper establishes convergence rate bounds for a variant of the proximal alternating direction method of multipliers (ADMM) for solving nonconvex linearly constrained optimization problems. The variant of the proximal ADMM allows the inclusion of an over-relaxation stepsize parameter belonging to the interval (0, 2). To the best of our knowledge, all(More)
In this paper, we extend the improved pointwise iteration-complexity result of a dynamic regularized alternating direction method of multipliers (ADMM) for a new stepsize domain. In this complexity analysis, the stepsize parameter can even be chosen in the interval (0, 2) instead of interval (0, (1 + √ 5)/2). As usual, our analysis is established by(More)
In this paper, we propose an inexact Newton-like conditional gradient method for solving constrained systems of nonlinear equations. The local convergence of the new method as well as results on its rate are established by using a general majorant condition. Two applications of such condition are provided: one is for functions whose the derivative satisfies(More)
  • 1