Learn More
PURPOSE The present report describes the development of paclitaxel-loaded gelatin nanoparticles for use in intravesical therapy of superficial bladder cancer. The commercial formulation of paclitaxel contains Cremophor, which forms micelles and thereby entraps the drug and reduces its partition across the urothelium. EXPERIMENTAL DESIGN Paclitaxel-loaded(More)
The rationale for intraperitoneal (IP) chemotherapy is to expose peritoneal tumors to high drug concentrations. While multiple phase III trials have established the significant survival advantage by adding IP therapy to intravenous therapy in optimally debulked ovarian cancer patients, the use of IP chemotherapy is limited by the complications associated(More)
Intraperitoneal chemotherapy prolongs survival of ovarian cancer patients, but its utility is limited by treatment-related complications and inadequate drug penetration in larger tumors. Previous intraperitoneal therapy used the paclitaxel/Cremophor EL (polyethoxylated castor oil) formulation designed for intravenous use. The present report describes the(More)
Intraperitoneal therapy (IP) has demonstrated survival advantages in patients with peritoneal cancers, but has not become a widely practiced standard-of-care in part due to local toxicity and sub-optimal drug delivery. Paclitaxel-loaded, polymeric microparticles were developed to overcome these limitations. The present study evaluated the effects of(More)
This study established a multiscale computational model for intraperitoneal (IP) chemotherapy, to depict the time-dependent and spatial-dependent drug concentrations in peritoneal tumors as functions of drug properties (size, binding, diffusivity, permeability), transport mechanisms (diffusion, convection), spatial-dependent tumor heterogeneities (vessel(More)
Intraperitoneal (IP) chemotherapy confers significant survival benefits in cancer patients. However, several problems, including local toxicity and ineffectiveness against bulky tumors, have prohibited it from becoming a standard of care. We have developed drug-loaded, polymeric tumor-penetrating microparticles (TPM) to address these problems. Initial(More)
  • 1