Learn More
Domestic animals are excellent models for genetic studies of phenotypic evolution. They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour. Identifying the genetic changes underlying these developments(More)
The mitochondrial genome, contained in the subcellular mitochondrial network, encodes a small number of peptides pivotal for cellular energy production. Mitochondrial genes are highly polymorphic and cataloguing existing variation is of interest for medical scientists involved in the identification of mutations causing mitochondrial dysfunction, as well as(More)
Resequencing of genomic regions that have been implicated by linkage and/or association studies to harbor genetic susceptibility loci represents a necessary step to identify causal variants. Massively parallel sequencing (MPS) offers the possibility of SNP discovery and frequency determination among pooled DNA samples. The strategies of pooling DNA samples(More)
Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA(More)
It has been proposed that as a result of human adaptation to different climates, mitochondrial genes have been affected by natural selection. To further study the selective pressure on human mitochondrial DNA, we have analysed polymorphism at the gene, domain and nucleotide site level in four geographic regions. The ratio of non-synonymous relative to(More)
Aim To present a summary of the lifestyle, genetic origin, diet, and disease in the population of Sami, indigenous people of northern Fen-noscandia. Method A survey of the available scientific literature and preliminary results from our own study of the Swedish Sami population. Results The Sami probably have a heterogeneous genetic origin, with a major(More)
It has been proposed that as a result of human adaptation to different climates, mitochondrial genes have been affected by natural selection. To further study the selective pressure on human mitochondrial DNA, we have analysed polymorphism at the gene, domain and nucleotide site level in four geographic regions. The ratio of non-synonymous relative to(More)
  • 1