Max F Riedel

Learn More
Atom chips provide a versatile quantum laboratory for experiments with ultracold atomic gases. They have been used in diverse experiments involving low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. However, a severe limitation of atom chips is that techniques to(More)
We report the slowing of a supersonic beam by elastic reflection from a receding atomic mirror. We use a pulsed supersonic nozzle to generate a 511+/-9 m/s beam of helium that we slow by reflection from a Si(111)-H(1x1) crystal placed on the tip of a spinning rotor. We were able to reduce the velocity of helium by 246 m/s and show that the temperature of(More)
We use a small Bose-Einstein condensate on an atom chip as an interferometric scanning probe to map out a microwave field near the chip surface with a few micrometers resolution. With the use of entanglement between the atoms, our interferometer overcomes the standard quantum limit of interferometry by 4 dB and maintains enhanced performance for(More)
A supersonic beam of noble gas atoms is a source of unprecedented brightness.A novel short pulse supersonic nozzle is developed with beam intensity that is higher by at least an order of magnitude than other available sources. We show how this beam can be coherently slowed and focused using elastic reflection from single crystals. Simulations show beam(More)
  • 1