Learn More
Biodiversity is essential to the viability of ecological systems. Species diversity in ecosystems is promoted by cyclic, non-hierarchical interactions among competing populations. Central features of such non-transitive relations are represented by the 'rock-paper-scissors' game, in which rock crushes scissors, scissors cut paper, and paper wraps rock. In(More)
Noise and spatial degrees of freedom characterize most ecosystems. Some aspects of their influence on the coevolution of populations with cyclic interspecies competition have been demonstrated in recent experiments [e.g., B. Kerr, Nature (London) 418, 171 (2002)10.1038/nature00823]. To reach a better theoretical understanding of these phenomena, we consider(More)
We study the general properties of stochastic two-species models for predator-prey competition and coexistence with Lotka–Volterra type interactions defined on a d-dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic fluctuations generically invalidates the classical, deterministic mean-field picture. Already within(More)
In the framework of the paradigmatic prisoner's dilemma game, we investigate the evolutionary dynamics of social dilemmas in the presence of "cooperation facilitators." In our model, cooperators and defectors interact as in the classical prisoner's dilemma, where selection favors defection. However, here the presence of a small number of cooperation(More)
– Species diversity in ecosystems is often accompanied by the self-organisation of the population into fascinating spatio-temporal patterns. Here, we consider a two-dimensional three-species population model and study the spiralling patterns arising from the combined effects of generic cyclic dominance, mutation, pair-exchange and hopping of the(More)
Cyclic dominance of species has been identified as a potential mechanism to maintain biodiversity, see, e.g., B. Kerr, M. A. Riley, M. W. Feldman and B. J. M. Bohannan [Nature 418, 171 (2002)] and B. Kirkup and M. A. Riley [Nature 428, 412 (2004)]. Through analytical methods supported by numerical simulations, we address this issue by studying the(More)
Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms(More)
We study the oscillatory dynamics in the generic three-species rock-paper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with coexistence of all species; (b) for low mutation rates, there is a region of the parameter space characterized by a limit(More)
Including spatial structure and stochastic noise invalidates the classical Lotka-Volterra picture of stable regular population cycles emerging in models for predator-prey interactions. Growth-limiting terms for the prey induce a continuous extinction threshold for the predator population whose critical properties are in the directed percolation universality(More)
The formation of out-of-equilibrium patterns is a characteristic feature of spatially extended, biodiverse, ecological systems. Intriguing examples are provided by cyclic competition of species, as metaphorically described by the 'rock-paper-scissors' game. Both experimentally and theoretically, such non-transitive interactions have been found to induce(More)