Learn More
The immune system responds to pathogens by a variety of pattern recognition molecules such as the Toll-like receptors (TLRs), which promote recognition of dangerous foreign pathogens. However, recent evidence indicates that normal intestinal microbiota might also positively influence immune responses, and protect against the development of inflammatory(More)
Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive(More)
Twitter is a unique social media channel, in the sense that users discuss and talk about the most diverse topics, including their health conditions. In this paper we analyze how Dengue epidemic is reflected on Twitter and to what extent that information can be used for the sake of surveillance. Dengue is a mosquito-borne infectious disease that is a leading(More)
The interaction between a microorganism and a potential host may modify each other in multiple ways. Because of their central role in controlling leukocyte trafficking and activation, chemokines may be essential in defining these interactions. Here, we describe potential uses of intravital microscopy to define the role of chemokines and their receptors in(More)
The interplay between the immune and neuroendocrine systems is intense, with the cross-talk between these two systems increasing during stress circumstances. Stress events culminate with hormonal pathway activation elevating the plasma levels of glucocorticoids and catecholamines. The majority of the works evaluating the effects of stress hormones on immune(More)
Neutrophil migration is responsible for tissue damage observed in inflammatory diseases. Neutrophils are also implicated in inflammatory nociception, but mechanisms of their participation have not been elucidated. In the present study, we addressed these mechanisms in the carrageenan-induced mechanical hypernociception, which was determined using a(More)
BACKGROUND Kinins are important mediators of inflammation and act through stimulation of two receptor subtypes, B1 and B2. Leukocyte infiltration contributes to the pathogenesis of autoimmune inflammation in the central nervous system (CNS), occurring not only in multiple sclerosis (MS) but also in experimental autoimmune encephalomyelitis (EAE). We have(More)
Bacterial meningitis caused by Streptococcus pneumoniae is associated with a significant mortality rate and persisting neurologic sequelae, including sensory-motor deficits, seizures, and impairment of learning and memory. The presence of proliferating bacteria within the subarachnoid and ventricular space compartments triggers an intense inflammatory host(More)
Experimental autoimmune encephalomyelitis (EAE) models multiple sclerosis (MS) and is characterized by marked mononuclear cell influx in the brain. Several studies have demonstrated a role for chemokines during EAE. It remains to be determined whether these mediators modulate EAE primarily by mediating leukocyte influx into the CNS or by modifying(More)
BACKGROUND AND PURPOSE Chemokines orchestrate neutrophil recruitment to inflammatory foci. In the present study, we evaluated the participation of three chemokines, KC/CXCL1, MIP-2/CXCL2 and LIX/CXCL5, which are ligands for chemokine receptor 2 (CXCR2), in mediating neutrophil recruitment in immune inflammation induced by antigen in immunized mice. (More)