Learn More
With the increasing use of artificial organs, blood damage has been raising ever more clinical concern. Blood trauma is in fact a major complication resulting from the implantation of medical devices and the use of life support apparatuses. Red blood cells damage predictive models furnish critical information on both the design and the evaluation of(More)
The main purpose of the study was to verify if helical flow, widely observed in several vessels, might be a signature of the blood dynamics of vein graft anastomosis. We investigated the existence of a relationship between helical flow structures and vascular wall indexes of atherogenesis in aortocoronary bypass models with different geometric features. In(More)
The main purpose of this study is to reproduce in silico the dynamics of a bileaflet mechanical heart valve (MHV; St Jude Hemodynamic Plus, 27mm characteristic size) by means of a fully implicit fluid-structure interaction (FSI) method, and experimentally validate the results using an ultrafast cinematographic technique. The computational model was(More)
This paper aims at delivering a structured overview of telerehabilitation literature by analysing the entire set of articles under the search terms "telerehabilitation" or "tele-rehabilitation" to portray "state of the art" ten years after the publication of the first scientific article on the topic. A structured study has been conducted by considering all(More)
Vascular access methods, performed by the insertion of cannulae into vessels, may disturb the physiological flow of blood, giving rise to non-physiological pressure variations and shear stresses. To date, the hydrodynamic behaviour of the cannulae has been evaluated comparing their pressure loss-flow rate relationships, as obtained from in vitro experiments(More)
BACKGROUND AND AIM OF THE STUDY Simulation of the opening and closure dynamics of a mechanical valve through a moving deforming mesh algorithm presents a challenge because of the large rotations of the leaflet and of the small gaps between the housing and the leaflets, which make remeshing a critical issue. The present study offers a computational approach(More)
A three-dimensional, realistic model of an aortic mechanical heart valve and Valsalva sinuses was developed to predict, by means of a numerical time dependent simulation, the flow field during a fraction of the systolic period. The numeric simulation was performed upon a model of valve similar to a Carbomedics 27 mm placed in a physiologic aortic root(More)
We present an optical non-contact method for heart beat monitoring, based on the measurement of chest wall movements induced by the pumping action of the heart, which is eligible as a surrogate of electrocardiogram (ECG) in assessing both cardiac rate and heart rate variability (HRV). The method is based on the optical recording of the movements of the(More)
Blood trauma caused by medical devices is a major concern. Complications following the implantation/application of devices such as prosthetic heart valves, cannulae, blood pumps, tubing, and throttles lead to sublethal and lethal damage to platelets and erythrocytes. This damage is provided by the alterations in fluid dynamics, providing a mechanical load(More)