Learn More
High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a 5-fold increase in relaxivity, leading to a peak relaxivity (per Gd3+ ion) of 41.6 mM(-1)(More)
The use of GdIII complexes as contrast agents in magnetic resonance imaging (MRI) has proven invaluable in the diagnosis of several internal abnormalities.1 The range of medical applications for which contrast agents are useful is likely to increase in the future with the development of target-specific contrast agents of increased relaxivity, such as MS-325(More)
Functionalised MCM-41 mesoporous silica nanoparticles were used as carriers of Gd(III) complexes for the development of nanosized magnetic resonance imaging contrast agents. Three Gd(III) complexes based on the 1,4,7,10-tetraazacyclododecane scaffold (DOTA; monoamide-, DOTA- and DO3A-like complexes) with distinct structural and magnetic properties were(More)
A series of macrocyclic Eu, Gd, and Tb complexes has been prepared in which the intramolecular ligation of a beta-arylsulfonamide nitrogen is rendered pH-dependent, giving rise to changes in the hydration state, q, at the lanthanide center. In complexes based on DO3A, variation of the p-substituent in the arylsulfonamide moiety determines the apparent(More)
The tripodal ligand tris[(3-hydroxy-1-methyl-2-oxo-1,2- didehydropyridine-4-carboxamido)ethyl]amine (TREN-Me-3,2-HOPO) forms a stable Gd3+ complex that is a promising candidate as a magnetic resonance imaging (MRI) contrast agent. However, its low water solubility prevents detailed magnetic characterization and practical applicability. Presented here are a(More)
The (1)H and (17)O NMR relaxometric properties of two cationic complexes formed by Gd(III) with a macrocyclic heptadentate triamide ligand, L(1), and its Nmethylated analogue, L(2), have been investigated in aqueous media as a function of pH, temperature and magnetic field strength. The complexes possess two water molecules in their inner coordination(More)
The synthesis and relaxivity properties of a new dendrimeric Gd chelate, Gd-TREN-bisHOPO-TAM-Asp-Asp2-12OH, are presented. The macromolecule demonstrates improved water solubility due to its 12 terminal hydroxyl groups and improved relaxivity due to its optimal water exchange rate and slower molecular tumbling. Unprecedented high relaxivity (r1p = 18 mM-1(More)
The metal–thiolate connectivity of recombinant Cd7-MT10 metallothionein from the sea mussel Mytilus galloprovincialis has been investigated for the first time by means of multinuclear, multidimensional NMR spectroscopy. The internal backbone dynamics of the protein have been assessed by the analysis of 15N T 1 and T 2 relaxation times and steady state(More)
Increasing the length of the carboxyamide arm of a GdDOTA monoamide (DOTA = 1,4,7,10-tetraaza-1,4,7,10-tetrakis(carboxymethyl)cyclododecane) complex from acetic to propionic accelerates the water exchange rate (k(ex)) by nearly two orders of magnitude; the (1)H relaxivity of the corresponding macromolecular derivatives may then be remarkably enhanced in(More)