Learn More
Gel shift and DNase I footprinting experiments showed that Escherichia coli FIS (factor for inversion stimulation) protein binds to at least seven sites in the promoter region of hns. These sites extend from -282 to +25 with two sites, closely flanking the DNA bend located at -150 from the transcriptional startpoint, partly overlapping the H-NS binding(More)
The virulence gene icsA of Shigella flexneri encodes an invasion protein crucial for host colonization by pathogenic bacteria. Within the intergenic region virA-icsA, we have discovered a new gene that encodes a non-translated antisense RNA (named RnaG), transcribed in cis on the complementary strand of icsA. In vitro transcription assays show that RnaG(More)
Two types of two-hybrid systems demonstrate that the transcriptional repressor, nucleoid-associated protein H-NS (histone-like, nucleoid structuring protein) forms dimers and tetramers in vivo, the latter being the active form of the protein. The H-NS 'protein oligomerization' domain (N-domain) is unable to oligomerize in the absence of the intradomain(More)
The icsA gene of Shigella encodes a structural protein involved in colonization of the intestinal mucosa by bacteria. This gene is expressed upon invasion of the host and is controlled by a complex regulatory circuit involving the nucleoid protein H-NS, the AraC-like transcriptional activator VirF, and a 450 nt antisense RNA (RnaG) acting as transcriptional(More)
The polyamine profile of Shigella, the etiological agent of bacillary dysentery in humans, differs markedly from that of E. coli, its innocuous commensal ancestor. Pathoadaptive mutations such as the loss of cadaverine and the increase of spermidine favour the full expression of the virulent phenotype of Shigella. Spermidine levels affect the expression of(More)
Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the(More)
CspA, the most characterized member of the csp gene family of Escherichia coli, is highly expressed not only in response to cold stress, but also during the early phase of growth at 37°C. Here, we investigate at molecular level the antagonistic role played by the nucleoid proteins FIS and H-NS in the regulation of cspA expression under non-stress(More)
  • 1