Learn More
This paper presents a control scheme for localizing and encircling a target using a multi-robot system. The task is achieved in a distributed way, in that each robot only uses local information gathered by on-board relative-position sensors assumed to be noisy, anisotropic, and unable to detect the identity of the measured object. Communication between the(More)
Unexpected contingencies in robot execution may induce a cascade of effects, especially when multiple robots are involved. In order to effectively adapt to this, robots need the ability to reason along multiple dimensions at execution time. We propose an approach to closed-loop planning capable of generating configuration plans, i.e., action plans for(More)
Technological advances in the robotic and ICT fields represent an effective solution to address specific societal problems to support ageing and independent life. One of the key factors for these technologies is that they have to be socially acceptable and believable to the end-users. This paper aimed to present some technological aspects that have been(More)
We present an approach to make planning adaptive in order to enable context-aware mobile robot navigation. We integrate a model-based planner with a distributed learning system based on reservoir computing, to yield personalized planning and resource allocations that account for user preferences and environmental changes. We demonstrate our approach in a(More)
Stigmergy is a powerful principle in nature, which has been shown to have interesting applications to robotic systems. By leveraging the ability to store information in the environment, robots with minimal sensing, memory, and computational capabilities can solve complex problems like global path planning. In this paper, we discuss the use of stigmergy in(More)
This paper focuses on the extension of the transferable belief model (TBM) to a multiagent-distributed context where no central aggregation unit is available and the information can be exchanged only locally among agents. In this framework, agents are assumed to be independent reliable sources which collect data and collaborate to reach a common knowledge(More)
Environmental monitoring is a rather new field in robotics. One of the main appealing tasks is gas mapping, i.e., the characterization of the chemical properties (concentration, dispersion, etc.) of the air within an environment. Current approaches rely on a robot using standard localization and mapping techniques to fuse gas measures with spatial features.(More)
In this paper the problem of multi-robot collaborative topological map-building is addressed. In this framework, a team of robots is supposed to move in an indoor office-like environment. Each robot, after building a local map by using infrared range-finders, achieves a topological representation of the environment by extracting the most significant(More)