Maurizio Casarin

Learn More
A novel two-step bottom-up approach to construct a 2D long-range ordered, covalently bonded fullerene/porphyrin binary nanostructure is presented: in the first place, reversible supramolecular interactions between C60 and 5,15-bis(4-aminophenyl)-10,20-diphenylporphyrin are exploited to obtain large domains of an ordered binary network, subsequently a(More)
A semiempirical addition of dispersive forces to conventional density functionals (DFT-D) has been implemented into a pseudopotential plane-wave code. Test calculations on the benzene dimer reproduced the results obtained by using localized basis set, provided that the latter are corrected for the basis set superposition error. By applying the(More)
Porphyrins and their metal complexes are particularly well suitable for applications in photoelectronics, sensing, energy production, because of their chemical, electronic and optical properties. The understanding of the electronic properties of the pristine molecule is of great relevance for the study and application of the wide class of these compounds.(More)
We report on a stepwise on-surface polymerization reaction leading to oriented graphene nanoribbons on Au(111) as the final product. Starting from the precursor 4,4″-dibromo-p-terphenyl and using the Ullmann coupling reaction followed by dehydrogenation and C-C coupling, we have developed a fine-tuned, annealing-triggered on-surface polymerization that(More)
A bottom-up route towards the synthesis of titania nanosheets is explored, alternative to the exfoliation of layered titanates. Nanosheets are assembled from the constituent elements and epitaxially matched to a suitable substrate: (1 x 2)-Pt(110). Their basic lepidocrocite structure is modulated at the nanoscale due to coincidence with the substrate.(More)
The reactions of pyrazole (Hpz) with some copper(II) carboxylates in the presence of water yield trinuclear copper derivatives characterized by the triangular core [Cu3mu3-OH)(mu-pz)3(RCOO)2] (R = H, C2H5, C3H7). Copper(II) formate gives [Cu3(mu3-OH)(mu-pz)3(HCOO)2(Hpz)2] (1), whereas copper propionate and butyrate afford(More)
An original synthetic route, based on the combination of a single-source precursor, UV-photodegradation and inverse w/o miniemulsion, is used to prepare Au nanoparticles (NPs) dispersed on titania. The source of the nanocomposite materials is the photolabile single-source precursor AuCl4(NH4)7[Ti2(O2)2(cit)(Hcit)]2·12H2O, which is suspended in a w/o(More)
The structure of two ordered stoichiometric TiO(2) nanophases supported on Pt(111) and (1x2)-Pt(110) substrates, prepared by reactive evaporation of Ti in a high-oxygen background, is compared by discussing experimental data (i.e. low-energy electron diffraction, scanning tunneling microscopy) and density functional theory calculations. Two rectangular(More)
We explore a photochemical approach to achieve an ordered polymeric structure at the sub-monolayer level on a metal substrate. In particular, a tetraphenylporphyrin derivative carrying para-amino-phenyl functional groups is used to obtain extended and highly ordered molecular wires on Ag(110). Scanning tunneling microscopy and density functional theory(More)
The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface(More)